Skip to main content
Log in

Testing de Broglie’s Double Solution in the Mesoscopic Regime

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We present here solutions of a non-linear Schrödinger equation in presence of an arbitrary linear external potential. The non-linearity expresses a self-focusing interaction. These solutions are the product of the pilot wave with peaked solitons the velocity of which obeys the guidance equation derived by Louis de Broglie in 1926. The degree of validity of our approximations increases when the size of the soliton decreases and becomes negligible compared to the typical size over which the pilot wave varies. We discuss the possibility to reveal their existence by implementing a humpty-dumpty Stern-Gerlach interferometer in the mesoscopic regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It is worth noting that, although the potential chosen here presents some analogy with previous proposals aimed at fulfilling de Broglie’s double solution program [10, 11], it differs from them by the fact that it is undissociable from the factorisation ansatz (2). This ansatz has been studied in the past, in the framework of the linear Schrödinger equation actually, by Barut [12] and Bindel [13] for instance, but, to the knowledge of the author, the system of coupled Eqs. (1, 2, 11) has never been considered in the past.

  2. Note that, to simplify the mathematical treatment we assumed here to begin with that the three cartesian components of the barycentre of the pilot wave oscillate in phase. Now, as the Eq. (19) is separable in cartesian coordinates, our results are still valid if we relax this assumption.

  3. The main difference between the present approach and “conventional” semi-classical gravity à la Schrödinger-Newton is that here the source term is supposed to be proportional to \(\mid \Psi \mid ^2\) and not to \(\mid \Psi _L\mid ^2\) as is the case in semi-classical gravity. Our approach however is reminiscent of Penrose’s ideas [16, 35, 36] according to which a fundamental non-linearity explains the collapse of the wave function, excepted that here the non-linearity is not of gravitational origin, and that the collapse of each elementary particle is permanent and occurs over regions of size of the order of the Compton wavelength.

  4. In first approximation, the self-gravitational potential can be estimated making use of \(V^\mathrm {eff}(d)=-Gm^2({3R^2-d^2\over 2R^3})\), which expresses the gravitational potential inside a homogeneous nanosphere of radius R.

  5. Actually, a single humpty dumpty device suffices to falsify our model, because the standard theory predicts that no dephasing appears between the two branches of the humpty dumpty device when only one nanosphere is present. This is not the case with our approach, which predicts a dephasing equal to \(\pm \tau {Gm^2\over \hbar } ({3\over 2R}-{1\over d})\) with d the distance between the spin up and spin down paths and R the radius of the nanosphere. The value of the sign of the dephasing depends on where the (mass/energy of the) nanosphere is located. The localisation of the mass/energy of the nanosphere obeys in turn the Born rule, in virtue of the quantum H-theorem.

  6. For what concerns the criticism according to which a deterministic equation cannot mimic the indeterministic nature of the measurement process, it is nullified by Valentini’s H-theorem. Deterministic chaos leads to indeterminism as is well-known [27,28,29].

References

  1. Bacciagaluppi, G., Valentini, A.: Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press, Cambridge (2010). arXiv:quant-ph/0609184

  2. Bohm, D.: A suggested interpretation of the quantum theory in terms of “Hidden’’ variables. I. Phys. Rev. 85(2), 166–179 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden’’ variables. II. Phys. Rev. 85(2), 180–193 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  5. de Broglie, L.: Une tentative d’interprétation causale et non linéaire de la mécanique ondulatoire la théorie de la double solution. Paris: Gauthier- Villars, English translation: Nonlinear wave mechanics: A causal interpretation, p. 1960. Elsevier, Amsterdam (1956)

  6. de Broglie, L.: Interpretation of quantum mechanics by the double solution theory. Annales de la Fondation Louis de Broglie, 12, 4, 1987, English translation from a paper originally published in the book Foundations of Quantum Mechanics- Rendiconti della Scuola Internazionale di Fisica Enrico Fermi, IL Corso, B. d’ Espagnat ed. Academic Press N.Y. (1972)

  7. Hatifi, M., Lopez-Fortin, C., de Durt, T.: Broglie’s double solution: limitations of the self-gravity approach. Ann. Fond. Louis Broglie 43, 63–90 (2018)

    Google Scholar 

  8. Durt, T.: L. de Broglie’s double solution and self-gravitation. Ann. Fond. Louis de Broglie 42, 73 (2017)

  9. Fargue, D.: Louis de Broglie’s double solution: a promising but unfinished theory. Ann. Fond. Louis Broglie 42, 19 (2017)

    MathSciNet  Google Scholar 

  10. Guerret, P., Vigier, J.P.: De Broglie’s wave particle duality in the stochastic interpretation of quantum mechanics: a testable physical assumption. Found. Phys. 12, 1057–1083 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  11. Croca, J.R.: Towards a Nonlinear Quantum Physics. World Scientific, London (2003)

    MATH  Google Scholar 

  12. Barut, A.: Diffraction and interference of single de Broglie wavelets - Deterministic wave mechanics. In Courants, Amers, Ecueils en Microphysique, Fondation L. de Broglie (1993)

  13. Bindel, L.: Mécanique quantique non-relativiste d’une particule individuelle. Ann. Fond. Louis Broglie 37, 143–171 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Colin, S., Durt, T., Willox, R.: L. de Broglie’s double solution program: 90 years later. Ann. Fond. Louis Broglie 42, 19 (2017)

    MathSciNet  Google Scholar 

  15. Fargue, D.: Permanence of the corpuscular appearance and non linearity of the wave equation. In S. Diner et al., editor, The wave-particle dualism, pp. 149–172. Reidel (1984)

  16. Colin, S., Durt, T., Willox, R.: Can quantum systems succumb to their own (gravitational) attraction? Class. Quantum Grav. 31, 245003 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. de Broglie, L.: La mécanique ondulatoire et la structure atomique de la matière et du rayonnement. Comptes rendus de l’ académie des sciences, 183, n\(^\circ \) 447 (1926)

  18. Zloshchastiev, K.G.: Spontaneous symmetry breaking and mass generation as built-in phenomena in logarithmic nonlinear quantum theory. Acta Physica Polonica B 42(2), 261 (2011)

    Article  ADS  Google Scholar 

  19. Norsen, T.: On the explanation of Born-rule statistics in the de Broglie-Bohm pilot-wave theory. Entropy 20(6), 422 (2018)

    Article  ADS  Google Scholar 

  20. Valentini, A.: On the pilot-wave theory of classical, quantum and subquantum physics. PhD Thesis, SISSA (1992)

  21. Valentini, A., Westman, H.: Dynamical origin of quantum probabilities. Proc. R. Soc. A 461, 253–272 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Colin, S., Struyve, W.: Quantum non-equilibrium and relaxation to quantum equilibrium for a class of de Broglie-Bohm-type theories. New J. Phys. 12, 043008 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Towler, M.D., Russell, N.J., Valentini, Antony: Time scales for dynamical relaxation to the Born rule. Proc. R. Soc. A 468(2140), 990–1013 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Colin, S.: Relaxation to quantum equilibrium for Dirac fermions in the de Broglie-Bohm pilot-wave theory. Proc. R. Soc. A 468(2140), 1116–1135 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Abraham, E., Colin, S., Valentini, A.: Long-time relaxation in the pilot-wave theory. J. Phys. A 47, 395306 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Contopoulos, G., Delis, N., Efthymiopoulos, C.: Order in de Broglie - Bohm quantum mechanics. J. Phys. A 45(16),(2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Efthymiopoulos, C., Kalapotharakos, C., Contopoulos, G.: Origin of chaos near critical points of quantum flow. Phys. Rev. E 79(3),(2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. Tzemos, A.C., Contopoulos, G., Efthymiopoulos, C.: Origin of chaos in 3-d Bohmian trajectories. arXiv:1609.07069 (2016)

  29. Efthymiopoulos, C., Contopoulos, G., Tzemos, A.C.: Chaos in de Broglie—Bohm quantum mechanics and the dynamics of quantum relaxation. Ann. Fond. Louis Broglie 42, 73 (2017)

    MathSciNet  Google Scholar 

  30. Struyve, W.: Towards a novel approach to semi-classical gravity. In: The Philosophy of Cosmology, Chap. 18. Cambridge University Press, Cambridge, p. 356 (2017)

  31. Tilloy, A.: Binding quantum matter and space-time, without romanticism. Founds. Phys. 48, 1753–1769 (2018)

    Article  ADS  MATH  Google Scholar 

  32. Møller, C.: The energy-momentum complex in general relativity and related problems. In A. Lichnerowicz and M.-A. Tonnelat, editor, Les Théories Relativistes de la Gravitation - Colloques Internationaux CNRS 91. CNRS (1962)

  33. Rosenfeld, L.: On quantization of fields. Nucl. Phys. 40, 353–356 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  34. Diósi, L.: Gravitation and quantum-mechanical localization of macro-objects. Phys. Lett. A 105, 199–202 (1984)

    Article  ADS  Google Scholar 

  35. Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relat. Gravit. 28(5), 581–600 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Penrose, R.: On the Gravitization of Quantum Mechanics 1: Quantum State Reduction. Foundations of Physics, Vol. 44, Issue 5 (2014)

  37. Hatifi, M., Durt, T.: Revealing self-gravity in a Stern-Gerlach Humpty-Dumpty experiment. arxiv:quant-ph 200607420 (2019)

  38. Marletto, C., Vedral, V.: Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity. Phys. Rev. Lett. 119(24), 240402 (2017)

    Article  ADS  Google Scholar 

  39. Bose, S., Mazumdar, A., Morley, G., Ulbricht, H., Toro, M., Paternostro, M., Geraci, A., Andrew, A., Barker, P., Kim, M.S., Milburn, G.: Spin entanglement witness for quantum gravity. Phys. Rev. Lett. 119(24), 240402 (2017)

    Article  MathSciNet  Google Scholar 

  40. Scully, M., Englert, B.-G., Schwinger, J.: Spin coherence and Humpty-Dumpty. III. The effects of observation. Phys. Rev. A 40(4), 1775 (1989)

    Article  ADS  Google Scholar 

  41. Gisin, N.: Weinberg’s non-linear quantum mechanics and superluminal communications. Phys. Lett. A 143(1,2), 1–2 (1990)

    Article  ADS  Google Scholar 

  42. Polchinski, J.: Weinberg’s nonlinear quantum mechanics and the Einstein-Podolsky-Rosen paradox. Phys. Rev. Lett. 66(4), 397–400 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Page, D.N., Geilker, C.D.: Indirect evidence for quantum gravity. Phys. Rev. Lett. 47, 979–982 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  44. Lucas, R.: Sur la répartition de la masse équivalente à l’énergie potentielle et ses conséquences (par L. de Broglie), Note de M. René Lucas, Comptes rendus de l’ académie des sciences, 282 (1976)

  45. Einstein, A.: Letter from A. Einstein to H. Lorentz. Collected papers of A. Einstein: The swiss years: correspondence 1902-1914, 5 (2004)

  46. Poincaré, H.: La fin de la matière. Athenaeum 4086, 201–202 (1906)

    Google Scholar 

  47. Poincaré, H.: Sur la dynamique de l’ électron. Rendiconti del Circolo matematico di Palermo 21, 129–176 (1906)

    Article  MATH  Google Scholar 

  48. Fer, F.: L’ irréversibilité, fondement de la stabilité du monde physique. Gauthier- Villars, Paris (1977)

    Google Scholar 

  49. Fargue, D.: Etats stationnaires en symétrie sphérique d’une famille d’équation de Schroedinger non-linéaires. Annales de la Fondation Louis deBroglie 12, 203 (1987)

    Google Scholar 

  50. Visser, M.: A classical model for the electron. Phys. Lett. A 139(3), 4 (1989)

    Google Scholar 

  51. Anastopoulos, C., Hu, B.-L.: Problems with the Newton-Schrödinger equations. New J. Phys. 16, 085007 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Margalit, Y., Dobkowski, O., Zhou, Z., Amit, O., Japha, Y., Moukouri, S., Rohrlich, D., Mazumdar, A., Bose, S., Henkel, C., Folman, R.: Realization of a complete Stern-Gerlach interferometer, Science Advances , 7(22) (2020)

  53. Colella, R., Overhauser, A.W., Werner, S.A.: Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472–1474 (1975)

    Article  ADS  Google Scholar 

  54. Bialynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys. 100, 62–93 (1976)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Durt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durt, T. Testing de Broglie’s Double Solution in the Mesoscopic Regime. Found Phys 53, 2 (2023). https://doi.org/10.1007/s10701-022-00626-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00626-1

Keywords

Navigation