Skip to main content
Log in

Towards an Information Description of Space-Time

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We attempt to describe geometry in terms of informational quantities for the universe considered as a finite ensemble of correlated quantum particles. As the main dynamical principle, we use the conservation of the sum of all kinds of entropies: thermodynamic, quantum and informational. The fundamental constant of speed is interpreted as the information velocity for the world ensemble and also connected with the gravitational potential of the universe on a particle. The two postulates, which are enough to derive the whole theory of Special Relativity, are re-formulated as the principles of information entropy universality and finiteness of information density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

References

  1. Carroll, R.: On the Emergence Theme of Physics. World Scientific, Singapore (2010)

    Book  Google Scholar 

  2. Ashtekar, A., Rovelli, C., Smolin, L.: Weaving a classical geometry with quantum threads. Phys. Rev. Lett. 69, 237 (1992). https://doi.org/10.1103/PhysRevLett.69.237

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Connes, A.: Von Neumann algebra automorphisms and time thermodynamics relation in general covariant quantum theories. Class. Quant. Grav. 11, 2899 (1994). https://doi.org/10.1088/0264-9381/11/12/007

    Article  ADS  MATH  Google Scholar 

  4. Jacobson, T.: Thermodynamics of space-time: the Einstein equation of state. Phys. Rev. Lett. 75, 1260 (1995). https://doi.org/10.1103/PhysRevLett.75.1260

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Lashkari, N., McDermott, M.B., Van Raamsdonk, M.: Gravitational dynamics from entanglement thermodynamics. JHEP 04, 195 (2014). https://doi.org/10.1007/JHEP04(2014)195

    Article  ADS  Google Scholar 

  6. Cao, C., Carroll, S.M., Michalakis, S.: Space from Hilbert space: recovering geometry from bulk entanglement. Phys. Rev. D 95, 024031 (2017). https://doi.org/10.1103/PhysRevD.95.024031

    Article  ADS  MathSciNet  Google Scholar 

  7. Verlinde, E.P.: On the origin of gravity and the laws of newton. JHEP 04, 029 (2011). https://doi.org/10.1007/JHEP04(2011)029

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Padmanabhan, T.: Thermodynamical aspects of gravity: new insights. Rep. Prog. Phys. 73, 046901 (2010). https://doi.org/10.1088/0034-4885/73/4/046901

    Article  ADS  Google Scholar 

  9. Padmanabhan, T.: Distribution function of the atoms of spacetime and the nature of gravity. Entropy 17, 7420 (2015). https://doi.org/10.3390/e17117420

    Article  ADS  Google Scholar 

  10. Padmanabhan, T.: Emergent perspective of gravity and dark energy. Res. Astron. Astrophys. 12, 891 (2012). https://doi.org/10.1088/1674-4527/12/8/003

    Article  ADS  Google Scholar 

  11. Amari, Sh.-I.: Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics, vol. 28. Springer-Verlag, Berlin Heidelberg (1985)

    MATH  Google Scholar 

  12. Amari, Sh.-I., Nagaoka, H.: Methods of Information Geometry. Translations of Mathematical Monographs, vol. 191 American Math. Soc (2000)

  13. Caticha, A.: Entropic dynamics. Entropy 17, 6110 (2015). https://doi.org/10.3390/e17096110

    Article  ADS  MathSciNet  Google Scholar 

  14. Ribeiro, M., et al.: The entropy universe. Entropy 23, 222 (2021). https://doi.org/10.3390/e23020222

    Article  ADS  MathSciNet  Google Scholar 

  15. Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  16. Gogberashvili, M.: Information-probabilistic description of the universe. Int. J. Theor. Phys. 55, 4185 (2016). https://doi.org/10.1007/s10773-016-3045-4

    Article  MathSciNet  MATH  Google Scholar 

  17. Gogberashvili, M., Modrekiladze, B.: Probing the information-probabilistic description. Int. J. Theor. Phys. 61, 149 (2022). https://doi.org/10.1007/s10773-022-05129-3

    Article  MathSciNet  MATH  Google Scholar 

  18. Gogberashvili, M.: Cosmological constant from the entropy balance condition. Adv. High Energy Phys. 2018, 3702498 (2018). https://doi.org/10.1155/2018/3702498

    Article  MathSciNet  Google Scholar 

  19. Gogberashvili, M., Chutkerashvili, U.: Cosmological constant in the thermodynamic models of gravity. Theor. Phys. 2, 163 (2017). https://doi.org/10.22606/tp.2017.24002

    Article  Google Scholar 

  20. Gogberashvili, M.: On the dynamics of the ensemble of particles in the thermodynamic model of gravity. J. Mod. Phys. 5, 1945 (2014). https://doi.org/10.4236/jmp.2014.517189

    Article  Google Scholar 

  21. Gogberashvili, M., Kanatchikov, I.: Cosmological parameters from the thermodynamic model of gravity. Int. J. Theor. Phys. 53, 1779 (2014). https://doi.org/10.1007/s10773-013-1976-6

    Article  MathSciNet  MATH  Google Scholar 

  22. Gogberashvili, M., Kanatchikov, I.: Machian origin of the entropic gravity and cosmic acceleration. Int. J. Theor. Phys 51, 985 (2012). https://doi.org/10.1007/s10773-011-0971-z

    Article  MATH  Google Scholar 

  23. Gogberashvili, M.: Thermodynamic gravity and the Schrodinger equation. Int. J. Theor. Phys. 50, 2391 (2011). https://doi.org/10.1007/s10773-011-0727-9

    Article  MATH  Google Scholar 

  24. Gogberashvili, M.: ‘Universal’ FitzGerald contractions. Eur. Phys. J. Chem. 63, 317 (2009). https://doi.org/10.1140/epjc/s10052-009-1108-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Gogberashvili, M.: Machian solution of hierarchy problem. Eur. Phys. J. C 54, 671 (2008). https://doi.org/10.1140/epjc/s10052-008-0559-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Landauer, R.: Information is physical. Phys. Today 44, 23 (1991). https://doi.org/10.1063/1.881299

    Article  ADS  Google Scholar 

  27. Horodecki, M., Oppenheim, J., Winter, A.: Partial quantum information. Nature 436, 673 (2005). https://doi.org/10.1038/nature03909

    Article  ADS  Google Scholar 

  28. del Rio, L., Aberg, J., Renner, R., Dahlsten, O., Vedral, V.: The thermodynamic meaning of negative entropy. Nature 474, 61 (2011). https://doi.org/10.1038/nature10123

    Article  Google Scholar 

  29. Cerf, N.J., Adami, C.: Negative entropy and information in quantum mechanics. Phys. Rev. Lett. 79, 5194 (1997). https://doi.org/10.1103/PhysRevLett.79.5194

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Gogberashvili, M.: The energy meaning of Boltzmann’s constant. Mod. Phys. Lett. B 33, 2150235 (2021). https://doi.org/10.1142/S0217984921502353

    Article  Google Scholar 

  31. Atkins, P.: Four Laws that Drive the Universe. Oxford University Press, Oxford (2007)

    Google Scholar 

  32. Kalinin, M., Kononogov, S.: Boltzmann’s constant, the energy meaning of temperature and thermodynamic irreversibility. Meas. Techn. 48, 632 (2005). https://doi.org/10.1007/s11018-005-0195-9

    Article  Google Scholar 

  33. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957). https://doi.org/10.1103/PhysRev.106.620

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Herrera, L.: Landauer principle and general relativity. Entropy 22, 340 (2020). https://doi.org/10.3390/e22030340

    Article  ADS  MathSciNet  Google Scholar 

  35. Ilgin, I., Yang, I.S.: Energy carries information. Int. J. Mod. Phys. A 29, 1450115 (2014). https://doi.org/10.1142/S0217751X14501152

    Article  ADS  MATH  Google Scholar 

  36. Pavon, D., Radicella, N.: Does the entropy of the universe tend to a maximum? Gen. Rel. Grav. 45, 63 (2013). https://doi.org/10.1007/s10714-012-1457-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Krishna, P.B., Mathew, T.K.: Holographic equipartition and the maximization of entropy. Phys. Rev. D 96, 063513 (2017). https://doi.org/10.1103/PhysRevD.96.063513

    Article  ADS  MathSciNet  Google Scholar 

  38. Hameroff, S., Penrose, R.: Consciousness in the universe. A review of the Orch OR theory. Phys. Life Rev. 11, 39 (2014). https://doi.org/10.1016/j.plrev.2013.08.002

    Article  ADS  Google Scholar 

  39. Brukner, C., Zeilinger, A.: Conceptual inadequacy of the Shannon information in quantum measurements. Phys. Rev. A 63, 022113 (2001). https://doi.org/10.1103/PhysRevA.63.022113

    Article  ADS  Google Scholar 

  40. Hartman, T., Maldacena, J.: Time evolution of entanglement entropy from black hole interiors. JHEP 05, 014 (2013). https://doi.org/10.1007/JHEP05(2013)014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Liu, H., Suh, S.J.: Entanglement tsunami: universal scaling in holographic thermalization. Phys. Rev. Lett. 112, 011601 (2014). https://doi.org/10.1103/PhysRevLett.112.011601

    Article  ADS  Google Scholar 

  42. Liu, H., Suh, S.J.: Entanglement growth during thermalization in holographic systems. Phys. Rev. D 89, 066012 (2014). https://doi.org/10.1103/PhysRevD.89.066012

    Article  ADS  Google Scholar 

  43. Kuwahara, T.: Strictly linear light cones in long-range interacting systems of arbitrary dimensions. Phys. Rev. X 10, 031010 (2020). https://doi.org/10.1103/PhysRevX.10.031010

    Article  Google Scholar 

  44. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973). https://doi.org/10.1103/PhysRevD.7.2333

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43 (1975) 199 (erratum: Commun. Math. Phys. 46 (1976) 206). https://doi.org/10.1007/BF02345020

  46. Bekenstein, J.D.: A Universal upper bound on the entropy to energy ratio for bounded systems. Phys. Rev. D 23, 287 (1981). https://doi.org/10.1103/PhysRevD.23.287

    Article  ADS  MathSciNet  Google Scholar 

  47. Dvali, G.: Entropy bound and unitarity of scattering amplitudes. JHEP 03, 126 (2021). https://doi.org/10.1007/JHEP03(2021)126

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Dvali, G.: Unitarity entropy bound: solitons and instantons. Fortsch. Phys. 69, 2000091 (2021). https://doi.org/10.1002/prop.202000091

    Article  ADS  MathSciNet  Google Scholar 

  49. Dvali, G.: Area law saturation of entropy bound from perturbative unitarity in renormalizable theories. Fortsch. Phys. 69, 2000090 (2021). https://doi.org/10.1002/prop.202000090

    Article  ADS  MathSciNet  Google Scholar 

  50. Gomes, H., Gryb, S., Koslowski, T.: Einstein gravity as a 3D conformally invariant theory. Class. Quant. Grav. 28, 045005 (2011). https://doi.org/10.1088/0264-9381/28/4/045005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Feynman, R.: The Character of Physical Law. MIT Press, Cambridge (2017)

    Book  Google Scholar 

  52. Araki, H., Lieb, E.H.: Entropy inequalities. Commun. Math. Phys. 18, 160 (1970). https://doi.org/10.1007/BF01646092

    Article  ADS  MathSciNet  Google Scholar 

  53. Gogberashvili, M.: Symmetries of the entropy balance condition for the universe. PoS Regio2021 017 (2022). https://doi.org/10.22323/1.412.0017

  54. Del Santo, F., Gisin, N.: The Relativity of indeterminacy. Entropy 23, 1326 (2021). https://doi.org/10.3390/e23101326

    Article  ADS  MathSciNet  Google Scholar 

  55. Bekenstein, J.D.: Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys. Rev. D 23, 287 (1981). https://doi.org/10.1103/PhysRevD.23.287

    Article  ADS  MathSciNet  Google Scholar 

  56. Brown, H.R.: Physical Relativity. Clarendon Press, Oxford (2005)

    Book  Google Scholar 

  57. Morin, D.: Introduction to Classical Mechanics. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  58. Penrose, R.: Difficulties with inflationary cosmology. Ann. N.Y. Acad. Sci. 571, 249 (1989). https://doi.org/10.1111/j.1749-6632.1989.tb50513.x

    Article  ADS  Google Scholar 

  59. Bolejko, K.: Gravitational entropy and the cosmological no-hair conjecture. Phys. Rev. D 97, 083515 (2018). https://doi.org/10.1103/PhysRevD.97.083515

    Article  ADS  MathSciNet  Google Scholar 

  60. Clifton, T., Ellis, G.F.R., Tavakol, R.: A gravitational entropy proposal. Class Quant. Grav. 30, 125009 (2013). https://doi.org/10.1088/0264-9381/30/12/125009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Rothman, T.: A Phase space approach to gravitational entropy. Gen. Rel. Grav 32, 1185 (2000). https://doi.org/10.1023/A:1001938114706

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Schmidt-May, A., von Strauss, M.: Recent developments in bimetric theory. J. Phys. A 49, 183001 (2016). https://doi.org/10.1088/1751-8113/49/18/183001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Modified gravity and cosmology. Phys. Rep. 513, 1 (2012). https://doi.org/10.1016/j.physrep.2012.01.001

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) through the Grant DI-18-335.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merab Gogberashvili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogberashvili, M. Towards an Information Description of Space-Time. Found Phys 52, 74 (2022). https://doi.org/10.1007/s10701-022-00594-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00594-6

Keywords

Navigation