Skip to main content
Log in

Epistemic Uncertainty from an Averaged Hamilton–Jacobi Formalism

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In recent years, the non-relativistic quantum dynamics derived from three assumptions; (i) probability current conservation, (ii) average energy conservation, and (iii) an epistemic momentum uncertainty (Budiyono and Rohrlich in Nat Commun 8:1306, 2017). Here we show that, these assumptions can be derived from a natural extension of classical statistical mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Perhaps, the meaning of “average” is more cleared, if we rewrite this axiom as \(\int f(x,p) [\partial _t S+H(x,p)]dx dp=0\)

  2. This variational principle is a direct generalization of the variational formulation of classical H–J formalism, i.e. \(\delta \int \rho [\partial _t S+H(x,\nabla S)]dx dt=0\), which leads to classical H–J and continuity equations [26]. Similar generalized actions, also used in some other methods for derivation of Schroedinger equation [8, 9, 27,28,29]. Moreover, one can use of an “average Hamilton’s equations” instead of this variational principle; i.e. \(\partial _t \rho =\delta \langle H\rangle /\delta S\) and \(\partial _t S=-\delta \langle H\rangle /\delta \rho\), where \(\rho\) and \(S\) are considered as canonical conjugate variables [19, 20]. In addition, it is easy to see that, the equation-of-motions which finally we find from these axioms, (4) and (5), have clear physical meanings in our interpretation: probability and average classical energy conservation, \(d\langle H\rangle /dt=0\), which together ensure conservation of the total classical energy of ensemble

References

  1. Dirac, P.A.M: The relation of classical to quantum mechanics. In: Proceedings of the Second Canadian Mathematical Congress (University of Toronto), p. 10. (1951)

  2. Oppenheim, J., Wehner, S.: The uncertainty principle determines the nonlocality of quantum mechanics. Science (2010). https://doi.org/10.1126/science.1192065

  3. Coles, P., Kaniewski, J., Wehner, S.: Equivalence of wave-particle duality to entropic uncertainty. Nat. Commun. (2014). https://doi.org/10.1038/ncomms6814

  4. Dürr, S., Rempe, G.: Can wave-particle duality be based on the uncertainty relation? Am. J. Phys. (2000). https://doi.org/10.1119/1.1285869

  5. Busch, P., Shilladay, C.: Complementarity and uncertainty in Mach–Zehnder interferometry and beyond. Phys. Rep. (2006). https://doi.org/10.1016/j.physrep.2006.09.001

  6. Storey, P., Tan, S., Collett, M., et al.: Path detection and the uncertainty principle. Nature 367, 626–628 (1994)

    Article  ADS  Google Scholar 

  7. Budiyono, A., Rohrlich, D.: Quantum mechanics as classical statistical mechanics with an ontic extension and an epistemic restriction. Nat. Commun. 8, 1306 (2017)

  8. Hall, M.J.W., Reginatto, M.: Schrödinger equation from an exact uncertainty principle. J. Phys. A 35, 3289 (2002)

    Article  ADS  Google Scholar 

  9. Hall, M.J.W.: Exact uncertainty relations. Phys. Rev. A 64, 052103 (2001)

  10. Budiyono, A.: Estimation independence as an axiom for quantum uncertainty. Phys. Rev. A 101, 022102 (2020)

  11. Budiyono, A., Dipojono, H.K.: Nonlinear Schrödinger equations and generalized Heisenberg uncertainty principle from estimation schemes violating the principle of estimation independence. Phys. Rev. A 101, 012205 (2020)

  12. Hänggi, E., Wehner, S.A.: A violation of the uncertainty principle implies a violation of the second law of thermodynamics. Nat. Commun. 4, 1670 (2013)

  13. Schleich, W.P., Greenberger, D.M., Kobe, D.H., Scully, M.O.: Schrödinger equation revisited. PNAS (2013). https://doi.org/10.1073/pnas.1302475110

  14. Hall, M.J.W., Deckert, D.-A., Wiseman, H.M.: Quantum phenomena modeled by interactions between many classical worlds. Phys. Rev. X 4, 041013 (2014)

  15. Poirier, B.: Editorial: does research on foundations of quantum mechanics fit into PRX’s scope? Phys. Rev. X 4, 040002 (2014)

  16. Sebens, C.T.: Quantum mechanics as classical physics. Philos. Sci. 82, 266 (2015)

  17. Boström, K.J.: Quantum mechanics as a deterministic theory of a continuum of worlds. Quantum Stud.: Math. Found. 2, 315 (2015)

  18. Lindgren, J., Liukkonen, J.: Quantum mechanics can be understood through stochastic optimization on spacetimes. Sci. Rep. 9, 19984 (2019)

    Article  ADS  Google Scholar 

  19. Hall, M.J.W., Reginatto, M.: Interacting classical and quantum ensembles. Phys. Rev. A 72, 062109 (2005)

  20. Hall, M.J.W., Reginatto, M.: Ensembles on Configuration Space. Springer International Publishing, Cham (2016)

  21. Schiff, J., Poirier, B.: Communication: quantum mechanics without wavefunctions. J. Chem. Phys. 136, 031102 (2012)

  22. Tipler, F.J.: Quantum nonlocality does not exist. PNAS 111, 11281 (2014)

  23. Smolin, L.: A real ensemble interpretation of quantum mechanics. Found. Phys. 42, 1239 (2012)

  24. Smolin, L.: Quantum mechanics and the principle of maximal variety. Found. Phys. 46, 736–758 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. Pusey, M., Barrett, J., Rudolph, T.: On the reality of the quantum state. Nat. Phys. 8, 475 (2012)

  26. Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

  27. Grössing, G.: The vacuum fluctuation theorem: exact Schrödinger equation via nonequilibrium thermodynamics. Phys. Lett. A 372, 4556 (2008)

  28. Reginatto, M.: Derivation of the equations of nonrelativistic quantum mechanics using the principle of minimum Fisher information. Phys. Rev. A 58, 1775 (1998)

  29. Atiq, M., Karamian, M., Golshani, M.: A new way for the extension of quantum theory: non-Bohmian quantum potentials. Found. Phys. 39, 33 (2009)

  30. Budiyono, A.: Quantum mechanics as a calculus for estimation under epistemic restriction. Phys. Rev. A 100, 062102 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. Richardson, C.D., Schlagheck, P., Martin, J., Vandewalle, N., Bastin, T.: Nonlinear Schrödinger wave equation with linear quantum behavior. Phys. Rev. A 89, 032118 (2014)

  32. Chou, C.-C.: Trajectory description of the quantum-classical transition for wave packet interference. Ann. Phys. 371, 437 (2016)

  33. Chou, C.-C.: Trajectory-based understanding of the quantum-classical transition for barrier scattering. Ann. Phys. 393, 167 (2018)

  34. Mousavi, S.V., Miret-Artés, S.: Dissipative tunnelling by means of scaled trajectories. Ann. Phys. 393, 76 (2018)

  35. Carlo, G.G.: Quantum isoperiodic stable structures and directed transport. Phys. Rev. Lett. 108, 210605 (2012)

  36. Carlo, G.G., Ermann, L., Rivas, A.M.F., Spina, M.E., Poletti, D.: Classical counterparts of quantum attractors in generic dissipative systems. Phys. Rev. E 95, 062202 (2017)

  37. Lenz, M., Wüster, S., Vale, C.J., Heckenberg, N.R., Rubinsztein-Dunlop, H., Holmes, C.A., Milburn, G.J., Davis, M.J.: Dynamical tunneling with ultracold atoms in magnetic microtraps. Phys. Rev. A 88, 013635 (2013)

  38. Lemos, G., Gomes, R., Walborn, S., et al.: Experimental observation of quantum chaos in a beam of light. Nat. Commun. 3, 1211 (2012)

    Article  ADS  Google Scholar 

  39. Smolin, L.: Quantum fluctuations and inertia. Phys. Lett. A 113, 408 (1986)

  40. Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079 (1966)

    Article  ADS  Google Scholar 

  41. Guerra, F., Morato, L.M.: Quantization of dynamical systems and stochastic control theory. Phys. Rev. D 27, 1774 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  42. de la Pena, L., Cetto, A.M.: Derivation of quantum mechanics from stochastic electrodynamics. J. Math. Phys. 18, 1612 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  43. Santos, E.: On a heuristic point of view concerning the motion of matter: from random metric to Schrödinger equation. Phys. Lett. A 352, 49 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Kazemi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, M.J., Rokni, S.Y. Epistemic Uncertainty from an Averaged Hamilton–Jacobi Formalism. Found Phys 52, 54 (2022). https://doi.org/10.1007/s10701-022-00571-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00571-z

Keywords

Navigation