Skip to main content
Log in

Path Integrals in a Multiply-Connected Configuration Space (50 Years After)

  • Published:
Foundations of Physics Aims and scope Submit manuscript

We must neglect our models and study our capabilities.

Edgar Allan Poe ([1], p. 122)

Abstract

The proposal made 50 years ago by Schulman (Phys Rev 176(5):1558–1569, 1968), Laidlaw and Morette-DeWitt (Phys Rev D 3(9):1375–1378, 1971) and Dowker (J Phys A 5:936–943, 1972) to decompose the propagator according to the homotopy classes of paths was a major breakthrough: it showed how Feynman functional integrals opened a direct window on quantum properties of topological origin in the configuration space. This paper casts a critical look at the arguments brought by this series of papers and its numerous followers in an attempt to clarify the reason why the emergence of the unitary linear representation of the first homotopy group is not only sufficient but also necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Not referring explicitly to topology does not mean, of course, that it is absent, all the more so when the mathematical concepts were not stabilized: even before Poincaré works at the turn of the xixxxth centuries, topological arguments irrigated fluid dynamics and electromagnetism thought the works of Helmholtz and of the Anglo-Irish-Scottish school including Stokes. In his paper, Dirac follows repeatedly a topological reasoning.

  2. For an historical survey on the quantum phase operator see [12] and for a compilation of papers see [13].

  3. Whereas, in differential geometry, (oriented) paths or curves are usually defined up to a (monotonically increasing) bijective continuous reparametrisation that can always be taken to be, say, \(s\in [0,1]\).

  4. If \(k_n(s_0^+)=k_{\sigma (n)}(s_0^-)\ne k_n(s_0^-)\) for a permutation \(\sigma\) of the discrete labels n, then the function \({\tilde{k}}_n(s)\smash {\overset{\text { def}}{=}}k_n(s)\varTheta (s-s_0)+k_{\sigma (n)}(s)\varTheta (s_0-s)\) is continuous at \(s_0\) and one can express the discontinuous functions \(k_n\) with the continuous functions \({\tilde{k}}_n\): \(k_n(s)= {\tilde{k}}_n(s)\varTheta (s-s_0)+{\tilde{k}}_{\sigma ^{-1}(n)}(s)\varTheta (s_0-s)\).

  5. The same line of thought leads to the construction of the Riemann surfaces from the complex plane. The latter is unfolded into n connected sheets to avoid the line cuts of the function \(z\mapsto z^{1/n}\).

  6. In the context of the Ehrenberg–Siday–Aharonov–Bohm effect, see Berry [43]’s fair denunciation of the use of multivalued wavefunctions.

  7. Supposedly, this motivated Dowker ([6], Introduction) “to present a somewhat neater and more attractive derivation of [the result (1)].”

  8. To reuse their notations, they write p. 1376 that if a path is given by the concatenation \(q(a,a')=q(a,b)q(b,a')\) hence \(S[q(a,a')]>S[q(a,b)]\) or, translated into the notations of the present article, \(\mathscr {C}=\mathscr {C}_1\cdot \mathscr {C}_2\Rightarrow S[\mathscr {C}]>S[\mathscr {C}_1]\).

  9. When \(\pi _1(Q)\) is finite, (18) is sufficient for the E’s to be given by the roots of unity.

References

  1. Poe, E.A.: Marginal notes ii. a sequel to the “marginalia” of the “democratic review”. Godey’s magazine and Lady’s Book, vol. XXXI, pp. 120–123 (1845)

  2. Schulman, L.S.: A path integral for spin. Phys. Rev. 176(5), 1558–1569 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  3. Schulman, L.S.: Green’s function for an electron in a lattice. Phys. Rev. 188(3), 1139–1142 (1969)

    Article  ADS  Google Scholar 

  4. Schulman, L.S.: Approximate topologies. J. Math. Phys. 12(2), 304–308 (1971)

    Article  ADS  Google Scholar 

  5. Laidlaw, M.G.G., Morette-DeWitt, C.: Feynman functional integrals for systems of indistinguishable particles. Phys. Rev. D 3(9), 1375–1378 (1971)

    Article  ADS  Google Scholar 

  6. Dowker, J.S.: Quantum theory on multiply connected spaces. J. Phys. A 5, 936–943 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  7. Schulman, L.S.: Techniques and Applications of Path Integration. Wiley, New York (1981)

    Book  Google Scholar 

  8. Nash, C.: Topology and physics—a historical essay. In [55], pp. 359–415, Chap. 12. See also arxiv:hep-th/9709135

  9. Mouchet, A.: Drowning by numbers: topology and physics in fluid dynamics. In [54], pp. 249–266. See also arxiv:1706.09454

  10. Dirac, P.A.M.: Quantised singularities in the electromagnetic field. Proc. R. Soc. Lond. Ser. A, 133, 60–72 (1931). reproduced in §2.1 of [59].

  11. Dirac, P.A.M.: The quantum theory of the emission and absorption of radiation. Proc. R. Soc. Lond. Ser. A. 114, 243–265 (1927). reproduced in [57] ( paper. 1 p. 1) and in [13] (paper. 1.1 p. 7)

  12. Nieto, M.M.: Quantum phase and quantum phase operators: some physics and some history. Phys. Scripta T48, 5–12 (1993)

    Article  ADS  Google Scholar 

  13. Barnett, S.M., Vaccaro, J.A.: The Quantum Phase Operator. A Review. Series in Optics and Optoelectronics. Taylor and Francis, New York (2007)

    Book  Google Scholar 

  14. Feynman, R.P.: The principle of least action in quantum mechanics (1942), reproduced in [51], pp. 1–69.

  15. Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Modern Phys. 20(2), 367–387 (1948). reproduced in [57], p. 321 and in [51], p. 71.

  16. Pauli, W.: Selected topics in field quantization, volume 6 of Pauli Lectures on Physics: Selected Topics in Field Quantization. MIT press, Cambridge, 1957/73. In: Enz, C.P., and translated by S. Margulies and H.R. Lewis from the German notes Ausgewählte Kapitel aus der Feldquantisierung (Zürich, Verlag des Vereins der Mathematiker und Physiker an der eth, 1957) prepared by U. Hochstrasser und M. R. Schafroth from a course given in eth in 1950–51

  17. DeWitt, B.S.: Dynamical theory in curved spaces. i. A review of the classical and quantum action principles. Rev. Modern Phys. 29(3), 377–397 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  18. Edwards, S.F., Gulyaev, Y.V.: Path integrals in polar co-ordinates. Proc. R. Soc. London Ser. A 279(1377), 229–235 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  19. McLaughlin, D.W., Schulman, L.S.: Path integrals in curved spaces. J. Math. Phys. 12(12), 2520–2524 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  20. Dowker, J.S.: Covariant Feynman derivation of Schrodinger’s equation in a Riemannian space. J. Phys. A 7, 1256–1265 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  21. Fanelli, R.: Canonical transformations and phase space path integrals. J. Math. Phys. 17(4), 490–493 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  22. Gervais, J.-L., Jevicki, A.: Point canonical transformations in the path integral. Nuclear Phys. A 110, 93–112 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  23. Prokhorov, L.V., Shabanov, S.V.: Hamiltonian Mechanics of Gauge Systems. Cambridge Monographs on Mathmatica Physics. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  24. Feynman, R.P., Hibbs, A.R.: Quantum mechanics and path integrals. International series in pure and applied physics. McGraw-Hill Publishing Company, New York, 1965. Emended edition by Daniel F. Styer (Dover, 2005)

  25. Ehrenberg, W., Siday, R.E.: The refractive index in electron optics and the principles of dynamics. Proc. Phys. Soc. B 62(1), 8–21 (1949)

    Article  ADS  Google Scholar 

  26. Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115(3), 485–491 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  27. Leinaas, J.M., Myrheim, J.: On the theory of identical particles. Nuovo Cimento B 37(1), 1–23 (1977)

    Article  ADS  Google Scholar 

  28. Wilczek, F.: Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49(14), 957–959 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  29. Arovas, D.P.: Topics in fractional statistics. In [58], pp. 284–322.

  30. Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  31. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge, 2002. ISBN 0-521-79160-X. freely available from pi.math.cornell.edu/hatcher

  32. Fomenko, A., Fuchs, D.: Homotopical Topology, volume 273 of Graduate Texts in Mathematics. Springer, 2016. ISBN 9783319234885. Second edition

  33. Horvathy, P., Morandi, G., Sudarshan, E.C.G.: Inequivalent quantizations in multiply connected spaces. Nuovo Cimento 11D(1–2), 201–228 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  34. Oh, C.H., Soo, C.P., Lai, C.H.: The propagator in the generalized Aharonov–Bohm effect. J. Math. Phys. 29(5), 1154–1157 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  35. Balachandran, A.P.: Classical topology and quantum phases: quantum mechanics. In [52], pp. 1–28.

  36. Berg, H.P.: Feynman path integrals on manifolds and geometric methods. Nuovo Cimento 66A(4), 441–449 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  37. Tarski, J: Path integrals over manifolds. In [53], pp. 229–239.

  38. Anderson, A.: Changing topology and nontrivial homotopy. Phys. Lett. B 212(3), 334–338 (1988)

    Article  ADS  Google Scholar 

  39. Ho, V.B., Morgan, M.J.: Quantum mechanics in multiply-connected spaces. J. Phys. A 29, 1497–1510 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  40. Tanimura, S., Tsutsui, I.: Inequivalent quantizations and holonomy factor from the path-integral approach. Ann. Phys. 258, 137–156 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  41. Forte, S: Spin in quantum field theory. In [56], pp. 66–94 and also arxiv:hep-th/0507291

  42. Kocábová, P., Št’ovíček, P.: Generalized Bloch analysis and propagators on Riemannian manifolds with a discrete symmetry. J. Math. Phys. 49(033518), 1–15 (2008)

    MathSciNet  Google Scholar 

  43. Berry, M.V.: Exact Aharonov–Bohm wavefunction obtained by applying Dirac’s magnetic phase factor. Eur. J. Phys. 1, 240–244 (1980)

    Article  Google Scholar 

  44. Tonomura, A.: Direct observation of thitherto unobservable quantum phenomena by using electrons. Proc. Natl. Acad. Sci. USA 102(42), 14952–14959 (2005)

    Article  ADS  Google Scholar 

  45. Webb, R.A., Washburn, S., Umbach, C.P., Laibowitz, R.B.: Observation of \(h/e\) Aharonov–Bohm oscillations in normal-metal rings. Phys. Rev. Lett. 54(25), 2696–2699 (1985)

    Article  ADS  Google Scholar 

  46. DeWitt-Morette, C., Maheshwari, A., Nelson, B.: Path integration in non-relativistic quantum mechanics. Phys. Rep. 50(5), 255–372 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  47. Cartier, P., DeWitt-Morette, C.: A new perspective on functional integration. J. Math. Phys. 36(5), 2237–2312 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  48. Zak, J.: Finite translations in solid-state physics. Phys. Rev. Lett. 19(24), 1385–1387 (1967)

    Article  ADS  Google Scholar 

  49. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Saunders College, Philadelphia (1976)

    MATH  Google Scholar 

  50. Nayak, C., Simon, S.H., Stern, A., Freedman, M., Sarma, S.D.: Non-abelian anyons and topological quantum computation. Rev. Modern Phys. 80(3), 1083–1159 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  51. Brown, L.M.: Feynman’s Thesis: A New Approach to Quantum Theory. World Scientific, New Jersey, 2005. ISBN 9812563660

  52. De Filippo, S., Marinaro, M., Marmo, G., Vilasi, G., editors. Geometrical and Algebraic Aspects of Nonlinear Field Theory, Amsterdam, 1989. In: Proceedings of the meeting on Geometrical and Algebraic Aspects of Nonlinear Field Theory, Amalfi, Italy, May 23–28, 1988, North-Holland. ISBN 0-444-87359-7

  53. Doebner, H.D., Andersson, S.I., Prety, H.R. editors. Differential Geometric Methods in Mathematical Physics, volume 905 of Lecture notes in Maths, Berlin, 1982. In: Proceedings of a Conference Held at the Technical University of Clausthal, FRG, July 23–25, 1980, Springer. ISBN 3-540-11197-2

  54. Emmer, M., Abate, M. editors. Imagine Maths 6. Between culture and mathematics, Cham, 2018. Springer. ISBN 978-3-319-93948-3

  55. James, I.M. editor. History of topology, Amsterdam, 1999. North-Holland. ISBN 0-444-82375-1

  56. Pötz, W., Fabian, J., Hohenester, U., editors. Modern aspects of spin physics, volume 712 of Lecture notes in Physics, Berlin, 2007. Schladming Winter School in Theoretical Physics, Springer. ISBN 3-540-38590-8

  57. Schwinger, J. (ed.): Selected Papers on Quantum Electrodynamics. Dover, New York (1958)

    MATH  Google Scholar 

  58. Shapere, A., Wilczek, F. (eds.): Geometric Phases in Physics, volume 5 of Advanced Series in Mathematical Physics. World Scientific, Singapore, 1989. ISBN 9971-50-599-1

  59. Thouless, D.J.: Topological Quantum Numbers in Nonrelativistic Physics. World Scientific, Singapore (1998)

    Book  Google Scholar 

Download references

Acknowledgements

It is a pleasure to acknowledge my deep gratitude to Alain Comtet of the Laboratoire de Physique Théorique et de Modèles Statistiques de l’Université Paris Saclay for his precious advices on this work; all the more that he somehow initiated it some decades ago while guiding my first steps in physics research. Many thanks also to Dominique Delande for his continuous support and hospitality at the Laboratoire Kastler-Brossel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaury Mouchet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouchet, A. Path Integrals in a Multiply-Connected Configuration Space (50 Years After). Found Phys 51, 107 (2021). https://doi.org/10.1007/s10701-021-00497-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-021-00497-y

Keywords

Navigation