Skip to main content
Log in

On Haag’s Theorem and Renormalization Ambiguities

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We revisit the implications of Haag’s theorem in the light of the renormalization group. There is still some lack of discussion in the literature about the possible impact of the theorem on the standard (as opposite of axiomatic) quantum field theory, and we try to shed light in this direction. Our discussion then deals with the interplay between Haag’s theorem and renormalization. While we clarify how perturbative renormalization (for the sub-class of interactions that are renormalizable) marginalizes its impact when the coupling is formally small, we argue that a non-perturbative and non-ambiguous renormalization cannot be built if there is any reference to the interaction picture with free fields. In other words, Haag’s theorem should be regarded as a no-go theorem for the existence of a non-ambiguous analytic continuation from perturbative to non-perturbative QFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors declare that no data have been taken during the completion of this work.

Code Availability

The authors declare that no code or custom software has been developed during the completion of this work.

Notes

  1. In Eqs. (11) and (13), one can also put coefficient ab, with \(|a|=|b|=1\), but this does not affect Eq. (16).

  2. Recall also that the unitarity of U can be rigorously proven in quantum mechanics [15].

  3. The drawback is that, at a given order in the expansion, all previous terms have to be computed as well, perhaps making it less useful in practical computations.

  4. This arbitrary constant makes the result obtained using the Borel–Ecalle resummation ambiguous.

  5. In principle, one might also consider power correction in \(\rho\) into the coefficient of L, but this does not change the conclusions here presented.

  6. We should stress again that the approach to RGE, leading to Eq. (29), is an approximation and some assumptions are required, such as the non-linearity in \(\rho\) are small, in agreement with the theory in [30].

References

  1. von Neumann, J.: Uber einen satz von herrn M. H. Stone. Ann. Math. 33, 567–573 (1932)

    Article  MathSciNet  Google Scholar 

  2. Stone, M.H.: On one-parameter unitary groups in Hilbert space. Ann. Math. 33, 643–648 (1932)

    Article  MathSciNet  Google Scholar 

  3. Haag, R.: On quantum field theories. Kong. Dan. Vid. Sel. Mat. Fys. Med 29N12, 1–37 (1955)

    MATH  Google Scholar 

  4. Klaczynski, L.: Haag’s theorem in renormalised quantum field theories. PhD Thesis, Humboldt University, Berlin (2016). https://doi.org/10.18452/17448

  5. Van Hove, L.: Les difficultés de divergences pour un modèle particulier de champ quantifié. Physica 18, 145–159 (1952). https://doi.org/10.1016/S0031-8914(52)80017-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Maiezza, A., Vasquez, J.C.: Non-local Lagrangians from renormalons and analyzable functions. Ann. Phys. 407, 78–91 (2019). https://doi.org/10.1016/j.aop.2019.04.015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bersini, J., Maiezza, A., Vasquez, J.C.: Resurgence of the renormalization group equation. Ann. Phys. 415, 168126 (2020). https://doi.org/10.1016/j.aop.2020.168126

    Article  MathSciNet  MATH  Google Scholar 

  8. t’Hooft, G.: Can we make sense out of quantum chromodynamics? Subnucl. Ser. 15, 943 (1979)

    Google Scholar 

  9. Hall, D., Wightman, A.: A Theorem on Invariant Analytic Functions with Applications to Relativistic Quantum Field Theory. Matematisk-fysiske meddelelser, I kommission hos Munksgaard (1957)

  10. Emch, G.: Algebraic Methods in Statistical Mechanics and Quantum Field Theory. Dover Publications, New York (2014)

    Google Scholar 

  11. Lopuszański, J.: A criterion for the free character of fields II. Nucl. Phys. 39, 169–173 (1962). https://doi.org/10.1016/0029-5582(62)90384-X

    Article  MathSciNet  MATH  Google Scholar 

  12. Hannesdottir, H., Schwartz, M.D.: \(S\)-matrix for massless particles. Phys. Rev. D 101, 105001 (2020). https://doi.org/10.1103/PhysRevD.101.105001

    Article  ADS  MathSciNet  Google Scholar 

  13. Hannesdottir, H., Schwartz, M.D.: A Finite \(S\)-Matrix. arXiv: 1906.03271

  14. Klaczynski, L., Kreimer, D.: Avoidance of a Landau Pole by flat contributions in QED. Ann. Phys. 344, 213–231 (2014). https://doi.org/10.1016/j.aop.2014.02.019

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Moretti, V.: Spectral Theory and Quantum Mechanics: Mathematical Foundations of Quantum Theories, Symmetries and Introduction to the Algebraic Formulation. UNITEXT: La Matematica per il 3+2, vol. 110, 2nd edn. Springer (2013). https://doi.org/10.1007/978-3-319-70706-8

  16. Magnus, W.: On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7, 649–673 (1954). https://doi.org/10.1002/cpa.3160070404

    Article  MathSciNet  MATH  Google Scholar 

  17. Iserles, A., Nørsett, S.: On the solution of linear differential equations in Lie groups. Philos. Trans. R. Soc. Lond. A 357, 983–1019 (1999). https://doi.org/10.1098/rsta.1999.0362

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Blanes, S., Casas, F., Oteo, J., Ros, J.: The magnus expansion and some of its applications. Phys. Rep. 470, 151–238 (2009). https://doi.org/10.1016/j.physrep.2008.11.001

    Article  ADS  MathSciNet  Google Scholar 

  19. Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Addison-Wesley, Reading (1995)

    Google Scholar 

  20. Bogoliubow, N.N., Parasiuk, O.S.: Über die multiplikation der kausalfunktionen in der quantentheorie der felder. Acta Math. 97, 227–266 (1957). https://doi.org/10.1007/BF02392399

    Article  MathSciNet  MATH  Google Scholar 

  21. Hepp, K.: Proof of the Bogoliubov–Parasiuk theorem on renormalization. Commun. Math. Phys. 2, 301–326 (1966). https://doi.org/10.1007/BF01773358

    Article  ADS  MATH  Google Scholar 

  22. Parisi, G.: The Borel transform and the renormalization group. Phys. Rep. 49, 215–219 (1979). https://doi.org/10.1016/0370-1573(79)90111-X

    Article  ADS  Google Scholar 

  23. Wilson, K.G.: Non-Lagrangian models of current algebra. Phys. Rev. 179, 1499–1512 (1969). https://doi.org/10.1103/PhysRev.179.1499

    Article  ADS  MathSciNet  Google Scholar 

  24. Wilson, K.G., Zimmermann, W.: Operator product expansions and composite field operators in the general framework of quantum field theory. Commun. Math. Phys. 24, 87–106 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  25. Callan, C.G.: Broken scale invariance in scalar field theory. Phys. Rev. D 2, 1541–1547 (1970). https://doi.org/10.1103/PhysRevD.2.1541

    Article  ADS  Google Scholar 

  26. Symanzik, K.: Small-distance behaviour in field theory. Lect. Notes Phys. 32, 20–72 (1975). https://doi.org/10.1007/3-540-07022-2_{1}0

    Article  ADS  MathSciNet  Google Scholar 

  27. Ecalle, J.: Les Fonctions Résurgentes, 3 volumes. pub. Math, Orsay (1981)

  28. Dunne, G.V., Ünsal, M.: Generating nonperturbative physics from perturbation theory. Phys. Rev. D 89, 041701 (2014). https://doi.org/10.1103/PhysRevD.89.041701

    Article  ADS  Google Scholar 

  29. Mahmoud, A.A., Yeats, K.: Connected Chord Diagrams and the Combinatorics of Asymptotic Expansions. arXiv: 2010.06550

  30. Costin, O.: Int. Math. Res. Not. 1995, 377 (1995). https://doi.org/10.1155/s1073792895000286

    Article  Google Scholar 

  31. Coleman, S.: Aspects of Symmetry: Selected Erice Lectures. Cambridge University Press, Cambridge (1985). https://doi.org/10.1017/CBO9780511565045

    Book  MATH  Google Scholar 

  32. Maiezza, A., Vasquez, J.C.: Non-Wilsonian ultraviolet completion via transseries. Int. J. Mod. Phys. A 11 (2020). arXiv: 2007.01270

  33. Bahns, D., Rejzner, K.: The Quantum Sine Gordon model in perturbative AQFT. Commun. Math. Phys. 357, 421–446 (2018). https://doi.org/10.1007/s00220-017-2944-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Maiezza, A., Vasquez, J.C.: Renormalons in a general Quantum Field Theory. Ann. Phys. 394, 84–97 (2018). https://doi.org/10.1016/j.aop.2018.04.027

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Oleg Antipin and Jahmall Bersini for the comments on the manuscript.

Funding

Alessio Maiezza was partially supported by the Croatian Science Foundation Project Number 4418. Juan Carlos Vasquez was supported in part under the U.S. Department of Energy Contract DE-SC0015376.

Author information

Authors and Affiliations

Authors

Contributions

The authors have contributed equally to the conception, writing, and development of this work.

Corresponding author

Correspondence to Juan Carlos Vasquez.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article. The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

The authors declare that to the best of their knowledge, there are no ethical approvals or certifications required for the development of this work. The authors declare that the paper and all the research around it are compliant with the Ethical Standards of the journal. The paper does not involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiezza, A., Vasquez, J.C. On Haag’s Theorem and Renormalization Ambiguities. Found Phys 51, 80 (2021). https://doi.org/10.1007/s10701-021-00484-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-021-00484-3

Keywords

Navigation