Skip to main content
Log in

On the Continuity of Geometrized Newtonian Gravitation and General Relativity

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Pessimistic meta-induction is a powerful argument against scientific realism, so one of the major roles for advocates of scientific realism will be trying their best to give a sustained response to this argument. On the other hand, it is also alleged that structural realism is the most plausible form of scientific realism; therefore, the plausibility of scientific realism is threatened unless one is given the explicit form of a structural continuity and minimal structural preservation for all our current theories. This essay aims to present what we call expansive structures, which are the structures that can be reconstructed from geometrized Newtonian gravitation and are capable of expanding into general relativity, explicitly. In this way, pessimistic meta-induction will be undermined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Whereby an induction is carried out on the past scientific theories, which all of them have been successful for quite a while but have now been rejected.

  2. It is well-known that there are generally two forms of structural realism; according to the first, what we know are structures (the epistemic form), and based on the second, what there are are structures (the ontic form) (see, for example, [32, p. 2]),

  3. It is noted that by a structure we mean what can be represented by a mathematical structure; that is, a set A with some relations defined on it, which generally represented by \(\left\langle A, R_{\alpha }\right\rangle _{\alpha \in A}\). In this case, it is evident that the continuity is structural continuity.

  4. However, it is astonishing that concrete works by them are so few and far between.

  5. GNG is a version of Newtonian mechanics in which the theory is formulated in a four dimensional manifold and gravitation is an exposition of curvature; that is, gravity has been geometrized away, such as general relativity.

  6. We claim that in the vast majority of scientific changes this is the case, yet it is a claim that is reinforced or weakened over time by a case-by-case study of scientific theories, one of which has been done here.

  7. Since structural realism claim needs an explicit backing up, which requires a case-by-case analysis for scientific theories, it is very important, in each theory change, to show explicitly what structure is preserved and why one holds that the models (structures) of preceding theory are approximate to the models of subsequent theory (structures).

  8. There are some other ways to introduce a structural preservation such as the partial structures account of da Costa and French [17]), the Redhead’s way [53, p. 86], and the Votsis’ suggestion [60, pp. 105–117].

  9. The notion will be specified and defined momentary.

  10. I thank an anonymous referee for pointing out to this issue.

  11. This guarantees that the relation under consideration are defined in the two theories independently.

  12. For an example of these steps, see the reconstructions, made in Sect. 5 and Appendix A.

  13. More specifically, on the case under consideration the frame theory of Ehlers [24,25,26,27,28,29], “makes explicit the conceptual and technical continuity between” classical and relativistic space-time theories [30]. The frame theory of Ehlers and a reconstruction of it in the topological (the compact-open topological) terms, presented by Fletcher [30] provide us with a systematic account of the Newtonian limit of general relativistic space-time theories. However, it should be noted that the papers by Ehlers and Fletcher cited do not assert that the parameter should be understood as the speed of light or a function of it.

  14. Note that \(\left| \dfrac{\phi }{c^2} \right| \sim GM.\)

  15. The metric formulated in the \(3+1\) form, which will be briefly mentioned below. Notice also that the gravitational field is static when \(N_i\rightarrow 0\), where \(N_i\) is the shift vector of GR metric [38, p. 104].

  16. Suppose \(V_1\), \(V_2\), \(V_1^\prime\), and \(V_2^\prime\) are some vector spaces, and let T and \(T^\prime\) be linear transformations belonging to \(L(V_1, V_2)\) and \(L(V_1^\prime , V_2^\prime )\), respectively. If both T and \(T^\prime\) are the zero transformations, two structures \(\left\langle V_1, V_2, T\right\rangle\) and \(\left\langle V_1^\prime , V_2^\prime , T^\prime \right\rangle\) are trivially partial isomorphic (It is easy to find \(F_1:V_1\rightarrow V_1^\prime\), \(F_2:V_2\rightarrow V_2^\prime\) , and \(f:T\rightarrow T^\prime\) that satisfy the above conditions.).

  17. It is worth noting that, Weatherall maintains that this is independent of any structural viewpoint and just is based on following stance: “‘sameness’ or ‘equivalence’ of mathematical models in physics should be the sense of equivalence given by the mathematics used in formulating those models.” [71].

  18. In what follows, we consider the theories locally.

  19. Cartan [11, 12], and Friedrichs [34], first, formulated some geometrized version of Newtonian and continued by others (see [47ch. 4]). The philosophical implications of relationships between relativity and Newtonian mechanics, in the light of these four-dimensional formulations of Newtonian mechanics, has been explored, for example, by Friedman [35], Malament [45, 46], Malament [47], Earman [21], Pooley [51], Fletcher [30, 31], Barrett [2], Weatherall [63,64,65, 68, 69], and Dewar and Weatherall [19], (see [70]).

  20. As Knox puts it “determining the right spacetime setting for a theory is a subtle business. Perhaps the most widely accepted methodological principle for choosing a spacetime is that advocated by Earman [20, 21, pp. 45–47]: the symmetries of one’s spacetime ought to exactly match any universal symmetries of one’s dynamics.” [41].

  21. I appreciate the anonymous referee for pointing out this point.

  22. There is “a sense in which the two theories might be regarded as equivalent over the nonvanishing-mass sector, since the mutual pair of associations might be regarded as showing how the two theories are intertranslatable with one another” (Dewar [18]).

  23. In what follows, a classical space-time is defined.

  24. That is \({R^a}_{bcd}=0\) which this means that the classical space-time is flat.

  25. There are also the other definitions of equivalence [3, 4, 36, 37].

  26. See [1, 35].

  27. See [59, pp. 415–416].

  28. \(t_a\) is just \(d_a t\), which can be denoted by \(\nabla _a t\), namely \(d_a t=\nabla _a t\).

  29. \(\Lambda\) and \(\Sigma\) are 1-dimensional timelike submanifold with the metric filed \((id)^*(t_{ab})\) and spacelike 3-dimensional submanifold with the metric filed \((id)^*({\hat{h}}_{ab})\), respectively.

  30. Note that a “significant number of spacetimes of physical interest predicted by general relativity belong to this class” [54].

  31. I appreciate an anonymous referee for constructive comment on this issue.

  32. It follows from equations (4.1.10) and (4.1.11) of Malament [47].

  33. Note that from [48] we have \({R}^i_{ab}\xi ^a\eta ^b= d_i+({R}^{Ni}_{ab})\xi ^a\eta ^b.\)

References

  1. Anderson, J.L.: Principles of Relativity Physics. Academic Press, New York (1967)

    Google Scholar 

  2. Barrett, T.: Spacetime structure. Stud. Hist. Philos. Mod. Phys. 51, 37–43 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Barrett, T.W., Halvorson, H.: Glymour and Quine on theoretical equivalence. J. Philos. Logic 45, 467–483 (2016a)

    MathSciNet  MATH  Google Scholar 

  4. Barrett, T.W., Halvorson, H.: Morita equivalence. Rev. Symb. Logic 9, 556–582 (2016b)

    MathSciNet  MATH  Google Scholar 

  5. Bueno, O.: Empirical adequacy: a partial structures approach. Stud. Hist. Philos. Sci. 28, 585–610 (1997)

    MathSciNet  Google Scholar 

  6. Bueno, O.: What is structural empiricism? Sci. Change Empir. Setting Erkenntnis 50, 59–85 (1999)

    MATH  Google Scholar 

  7. Bueno, O., French, S.: How theories represent. Br. J. Philos. Sci. 62, 857–94 (2011). https://doi.org/10.1093/bjps/axr010

    Article  MathSciNet  MATH  Google Scholar 

  8. Bueno, O., French, S.: Can mathematics explain physical phenomena? Br. J. Philos. Sci. 63, 85–113 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Bueno, O., French, S., Ladyman, J.: On representing the relationship between the mathematical and the empirical. Philos. Sci. 69, 497–518 (2002)

    MathSciNet  Google Scholar 

  10. Carroll, S.: Spacetime and Geometry: An Introduction to General Relativity. Addison Wesley, San Francisco (2004)

    MATH  Google Scholar 

  11. Cartan, E.: Sur les variètès aconnexion affine et al thèorie de la relativitè gènèralisèe. Annales Scientifiques de l’Ecole Normale Supèrieure 40, 325–412 (1923)

    MATH  Google Scholar 

  12. Cartan, E.: Sur les variètès aconnexion affine et al thèorie de la relativitè gènèralisèe. Annales Scientifiques de l’Ecole Normale Supèrieure 41, 1–25 (1924)

    MathSciNet  MATH  Google Scholar 

  13. da Costa, C.A.N., French, S.: Pragmatic truth and the logic of induction. Br. J. Philos. Sci. 40, 333–356 (1989)

    MathSciNet  MATH  Google Scholar 

  14. da Costa, C.A.N., French, S.: The model-theoretic approach in the philosophy of science. Philos. Sci. 57, 248–265 (1990)

    MathSciNet  Google Scholar 

  15. da Costa, C.A.N., French, S.: Towards an acceptable theory of acceptance: partial structures and the general correspondence principle. In: French, S., Kammijga, H. (eds.) Correspondence, Invariance and Heuristics: Essays in Honour of Heinz Post, pp. 137–158. Reidel, Dordrecht (1993a)

    Google Scholar 

  16. da Costa, C.A.N., French, S.: A model theoretic approach to “natural reasoning.”. Int. Stud. Philos. Sci. 7, 177–190 (1993b)

    Google Scholar 

  17. da Costa, C.A.N., French, S.: Science and Partial Truth: A Unitary Approach to Models and Scientific Reasoning. Oxford University Press, Oxford (2003)

    Google Scholar 

  18. Dewar, N.: Maxwell Gravitation, Philos. Sci. 85, 249–270 (2018)

  19. Dewar, N., Weatherall, J.O.: On gravitational energy in Newtonian theories. Found. Phys. 48, 558–578 (2018)

    MathSciNet  MATH  ADS  Google Scholar 

  20. Earman, J.: Leibniz and the absolute vs. relational dispute. In: Rescher, N. (ed.) Leibnizian Inquiries, A Group of Essays, pp. 9–22. University Press of America, Lanham, MD (1989a)

    Google Scholar 

  21. Earman, J.: World Enough and Space-Time. The MIT Press, Cambridge, MA (1989b)

    MATH  Google Scholar 

  22. Ehlers, J.: Survey of general relativity theory. In: Israel, W. (ed.) Relativity, Astrophysics and Cosmology. Reidel, Dordrecht (1973a)

    Google Scholar 

  23. Ehlers, J.: The nature and structure of spacetime. In: Mehra, J. (ed.) The Physicist’s Conception of Nature, pp. 71–91. Reidel, Dordrecht (1973b)

    Google Scholar 

  24. Ehlers, J.: Uber den Newtonschen Grenzwert der Einsteinschen Gravitationstheorie. In: Nitsch, J., Pfarr, J., Stachow, E.W. (eds.) Grundlagen Probleme der Modernen Physik. Wissenschaftsverlag, Mannheim (1981)

    Google Scholar 

  25. Ehlers, J.: On limit relations between, and approximative explanations of, physical theories. In: Marcus, R.B., Dorn, G.J.W., Weingartner, P. (eds.) Logic, Methodology and Philosophy of Science VII, pp. 387–403. Elsevier Science Publishers B.V., Amsterdam (1986)

    Google Scholar 

  26. Ehlers, J.: The Newtonian limit of general relativity, University of Cape Town, Department of Applied Mathematics Preprint, no. 89/1 (1988)

  27. Ehlers, J.: In: G. Ferrarese (ed.) The Newtonian Limit of General Relativity, Classical Mechanics and Relativity: Relationship and Consistency, pp. 95–106. Bibliopolis, Naples (1991)

  28. Ehlers, J.: Examples of Newtonian limits of relativistic spacetimes. Class. Quantum Gravity 14, A119–A126 (1997)

    MathSciNet  MATH  ADS  Google Scholar 

  29. Ehlers, J.: The Newtonian limit of general relativity. In: Richter, A.K. (ed.) Understanding Physics, pp. 1–13. Copernicus Gesellschaft e.V., Katlenburg-Lindau (1998)

    Google Scholar 

  30. Fletcher, S.C.: On the reduction of general relativity to Newtonian gravitation. Stud. Hist. Philos. Mod. Phys. (2019). https://doi.org/10.1016/j.shpsb.2019.04.005

    Article  MATH  Google Scholar 

  31. Fletcher, S.C.: On representational capacities, with an application to general relativity. Found. Phys. (2019). https://doi.org/10.1007/s10701-018-0208-6

    Article  MATH  Google Scholar 

  32. French, S.: The Structure of the World Metaphysics and Representation. Oxford University Press, Oxford (2014)

    Google Scholar 

  33. French, S., Ladyman, J.: Reinflating the semantic approach. Int. Stud. Philos. Sci. 13, 103–121 (1999)

    MathSciNet  MATH  Google Scholar 

  34. Friedrichs, K.: Eine Invariante Formulierung des Newtonschen Gravitationsgesetzes und derGrenzüberganges vom Einsteinschen zum Newtonschen Gesetz. Mathematische Annalen 98, 566–575 (1927)

    MATH  Google Scholar 

  35. Friedman, M.: Foundations of Space-Time Theories: Relativistic Physics and Philosophy of Science. Princeton University Press, Princeton (1983)

    Google Scholar 

  36. Glymour, C.: Theoretical Realism and Theoretical Equivalence, PSA 1970, pp. 275–288. Springer, Berlin (1970)

    Google Scholar 

  37. Glymour, C.: The epistemology of geometry. Noûs 11, 227–251 (1977)

    Google Scholar 

  38. Gourgoulhon, É.: 3+1 Formalism in General Relativity Bases of Numerical Relativity. Springer, New York (2012)

    MATH  Google Scholar 

  39. Isham, C.J.: Canonical quantum gravity and the problem of time. arXiv:9210011 (1992)

  40. Kitcher, P.: The Advancement of Science. Oxford, Oxford University Press (1993)

    Google Scholar 

  41. Knox, E.: Newtonian spacetime structure in light of the equivalence principle. Br. J. Philos. Sci. 65, 863–888 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Ladyman, J., Ross, D., et al.: Every Thing Must Go: Metaphysics Naturalized. Oxford University Press, Oxford (2007)

    Google Scholar 

  43. Leplin, J.: A Novel Defense of Scientific Realism. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  44. Lewis, P.J.: Why the pessimistic induction is a fallacy. Synthese 129, 371–380 (2001)

    MathSciNet  MATH  Google Scholar 

  45. Malament, D.B.: Gravity and spatial geometry. In: Marcus, R.B., Dorn, G., Weingartner, P. (eds.) Logic, Methodology and Philosophy of Science, vol. VII, pp. 405–411. Elsevier Science Publishers, New York (1986)

    Google Scholar 

  46. Malament, D.B.: Newtonian gravity, limits, and the geometry of space. In: Colodny, R. (ed.) From Quarks to Quasars, pp. 181–201. University of Pittsburgh Press, Pittsburgh (1986b)

    Google Scholar 

  47. Malament, D.B.: Topics in the Foundations of General Relativity and Newtonian Gravitation Theory. University of Chicago Press, Chicago (2012)

    MATH  Google Scholar 

  48. Masoumi, S.: Some Propositions on the Limit between GR and GNG, manuscript (2020)

  49. Mikenberg, I., da Costa, C.A.N., Chuaqui, R.: Pragmatic truth and approximation to truth. J. Symb. Logic 51, 201–221 (1986)

    MathSciNet  MATH  Google Scholar 

  50. Papineau, D.: Introduction. In: Papineau, D. (ed.) The Philosophy of Science, pp. 1–20. Oxford University Press, Oxford (1996)

    Google Scholar 

  51. Pooley, O.: Substantivalist and relationalist approaches to spacetime. In: Batterman, R. (ed.) The Oxford Handbook of Philosophy of Physics, pp. 522–586. Oxford University Press, Oxford (2013)

    Google Scholar 

  52. Psillos, S.: Scientific Realism: How Science Tracks Truth, London: Routledge (1999)

    Google Scholar 

  53. Redhead, Michael: The intelligibility of the universe. R. Inst. Philos. Suppl. 48, 73–90 (2001). https://doi.org/10.1017/S1358246100010717

    Article  Google Scholar 

  54. Romero, C., Fonseca-Neto, J.B., Pucheu, M.L.: Conformally flat spacetimes and Weyl frames (2011). arXiv:1101.5333.pdf

  55. Saunders, S.: Rethinking Newton’s Principia. Philos. Sci. 80, 22–48 (2013)

    Google Scholar 

  56. Stanford, P.K.: Exceeding Our Grasp: Alternatives. Oxford University Press, Oxford (2006)

    Google Scholar 

  57. Straumann, N.: General Relativity. Springer, New York (2013)

    MATH  Google Scholar 

  58. Teh, N.: Recovering recovery: On the relationship between gauge symmetry and Trautman recovery. Philos. Sci. 85, 201–224 (2018)

    MathSciNet  Google Scholar 

  59. Trautman, A.: Comparison of Newtonian and relativistic theories of space-time. In: Hoffmann, B. (ed.) Perspectives in Geometry and Relativity. Indiana University Press, Bloomington (1966)

    Google Scholar 

  60. Votsis, I.: Structural realism: continuity and its limits. In: Bokulich, A., Bokulich, P. (eds.) Scientific Structuralism, Boston Studies in the Philosophy of Science. Springer, Dordrecht (2011)

    Google Scholar 

  61. Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    MATH  Google Scholar 

  62. Wallace, D.: Fundamental and emergent geometry in Newtonian physics. Br. J. Philos. Sci. (2017). https://doi.org/10.1093/bjps/axx056

    Article  Google Scholar 

  63. Weatherall, J.O.: On (some) explanations in physics. Philos. Sci. 78, 421–447 (2011a)

    MathSciNet  Google Scholar 

  64. Weatherall, J.O.: On the status of the geodesic principle in Newtonian and relativistic physics. Stud. Hist. Philos. Mod. Phys. 42, 276–281 (2011b)

    MathSciNet  MATH  Google Scholar 

  65. Weatherall, J.O.: What is a singularity in geometrized Newtonian gravitation? Philos. Sci. 81, 1077–1089 (2014)

    MathSciNet  Google Scholar 

  66. Weatherall, J.O.: Are Newtonian gravitation and geometrized Newtonian gravitation theoretically equivalent? Erkenntnis (2015). https://doi.org/10.1007/s10670-015-9783-5

    Article  MathSciNet  MATH  Google Scholar 

  67. Weatherall, J.O.: Maxwell-Huygens, Newton-Cartan, and Saunders-Knox spacetimes. Philos. Sci. 83, 82–92 (2016)

    MathSciNet  Google Scholar 

  68. Weatherall, J.O.: Conservation, inertia, and spacetime geometry. Forthcoming in Studies in History and Philosophy of Modern Physics (2017)

  69. Weatherall, J.O.: Inertial motion, explanation, and the foundations of classical space-time theories. In: Lehmkuhl, D., Schiemann, G., Scholz, E. (eds.) Towards a Theory of Spacetime Theories, pp. 13–42. Birkhäuser, Boston (2017b)

    Google Scholar 

  70. Weatherall, J.O.: Classical Spacetime Structure. arXiv:1707.05887 (2017)

  71. Weatherall, J.O.: Regarding the hole argument. Br. J. Philos. Sci. 69(2), 329–350 (2018)

    MathSciNet  MATH  Google Scholar 

  72. Worrall, J.: Scientific Realism and Scientific Change. Philos. Q. 32, 201–231 (1982)

    MathSciNet  Google Scholar 

  73. Worrall, J.: Structural Realism: The Best of Both Worlds? Dialectica 43(1–2):99–124 (1989)

    Google Scholar 

  74. Wray, B.: Success and truth in the realism/anti-realism debate. Synthese 190, 1719–1729 (2013)

    Google Scholar 

Download references

Funding

Funding was provided by Institute for Science and Technology Studies of Shahid Beheshti University, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Masoumi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Decompositions and Expansions

Appendix A: Decompositions and Expansions

First we note that according to the proposition (1.10.1) of Malament [47], there is an isomorphism between the tensor algebra of \(\Sigma\)-tensors at a point p of the metric submanifold \(\Sigma\) of the manifold M and the tensor algebra of M-tensors that are tangent to \(\Sigma\). Now let \(\Sigma\) be a three-dimensional metric submanifold of M with induced metric field \({\mathbf {h}}_{ab}\), and let \(h_{ab}\) be its corresponding symmetric tensor field that is tangent to \(\Sigma\). Then \(h_{ab}\) is completely determined by its action on the tangent and normal vectors to \(\Sigma\) at each point p [47, p. 100]. Similar remarks hold in the case of \(\Lambda\), a one-dimensional metric submanifold of M with induced metric filed \({\mathbf {t}}_{ab}\) for which \(t_{ab}\) is its corresponding symmetric tensor field that is tangent to \(\Sigma\).

Having pointed out the above remarks, here we introduce the decompositions and the expansions given in the Sect. 5. Before we see the decompositions and the expansions, let us define some useful notations.

  1. (a)

    \(\sigma _i\equiv {g}^i_{ab_{|_p}}\xi ^a \eta ^b= g^{ab}_{ i_{|_p}} \xi _a\eta _b.\)

  2. (b)

    \(\beta _i\equiv h^{ab}_{ i_{|_p}} \xi _a\eta _b.\)

  3. (c)

    \(\gamma _{i}\equiv \lambda ^a\lambda ^b_ { |_{_p}}\xi _a\eta _b\).

  4. (d)

    \(\delta _i\equiv {t}^i_{ab_{|_p}}\xi ^a \eta ^b\).

  5. (e)

    \(\theta _i\equiv {{{\hat{h}}}^i}_{ab_{|_p}} \xi ^a\eta ^b.\)

Note that in the relativistic space-time with the Minkowski metric \(h^{ab}\xi _a\mu _a={{{\hat{h}}}}_{ab}\xi ^a\mu ^a\) since

$$\begin{aligned}&\eta ^{ab}\xi _a\mu _a=(h^{ab}-\lambda ^a\lambda ^b)\xi _a\mu _b \\&\quad = {\left\{ \begin{array}{ll} h^{ab}\xi _a\mu _b &{} \xi _a\in {(id_p)}^*{(T_p\Sigma )_a} \ {\text{and}} \ \mu _b\in {(id_p)}^*{(T_p\Sigma )_b}\ \\ \\ -\lambda ^a\lambda ^b\xi _a\mu _b \ &{} \ \xi _a\in {(id_p)}^*{(T_p\Lambda )_a}\ {\text{and}} \ \mu _b \ \in {(id_p)}^*{(T_p\Lambda )_b}\\ \end{array}\right. } \end{aligned}$$
(14)

also it should be clearFootnote 32 that

$$\begin{aligned}&\eta _{ab}\xi ^a\mu ^a=({{\hat{h}}}_{ab}+t_{ab})\xi ^a\mu ^b \\&\quad ={\left\{ \begin{array}{ll} \hat{h}_{ab}\xi ^a\mu ^b &{} \quad \xi _a\in {(id_p)}_*{(T_p\Sigma )_a} \ {\text{and}} \ \mu _b\in {(id_p)}_*{(T_p\Sigma )_b}\ \\ \\ t_{ab}\xi _a\mu _b \ &{} \quad \xi _a\in {(id_p)}_*{(T_p\Lambda )_a}\ {\text{and}} \ \mu _b \in {(id_p)}_*{(T_p\Lambda )_b}.\\ \end{array}\right. } \end{aligned}$$
(15)

In addition, we know that the following equations hold:

  1. (A).

    \(h^{ab}\xi _a\mu _b=0 \ {\text{if and only if}}\ \xi _a\in {(id_p)}_*{(T_p\Lambda )_a}\ {\text {or}} \ \mu _a\in {(id_p)}_*{(T_p\Lambda )_b}.\)

  2. (B).

    \(\lambda ^a\lambda ^b\xi _a\mu _b=0 \ {\text{if and only if}}\ \xi _a\in {(id_p)}_*{(T_p\Sigma )_a}\ {\text{or}} \ \mu _a\in {(id_p)}_*{(T_p\Sigma )_b}.\)

  3. (C).

    \(t_{ab}\xi ^a\mu ^b=0\ {\text{if and only if}}\ \xi ^a\in {(id_p)}_*{(T_p\Sigma )_a} \ {\text{or}} \ \mu ^a\in {(id_p)}_*{(T_p\Sigma )_b}.\)

  4. (D).

    \({{\hat{h}}}_{ab}\xi ^a\mu ^b=0\ {\text{if and only if}}\ \xi ^a\in {(id_p)}_*{(T_p\Lambda )_a} \ {\text{or}} \ \mu ^a\in {(id_p)}_*{(T_p\Lambda )_b}.\)

1.1 A.1 A Decomposition of \(g_{ab}\)

$$\begin{aligned}&{g}^1_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, \sigma _1):\xi ^a\in {(id_p)}_*(T_p\Sigma )^a \ {\text{and}} \ \eta ^b\in (id_p)_*(T_p\Sigma )^b \Big \}.\\&{g}^2_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, \sigma _2):\xi ^a\in (id_p)_*(T_p\Lambda )^a \ {\text{and}} \ \eta ^b\in (id_p)_*(T_p\Lambda )^b \Big \}. \\&{g}^3_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, 0):\xi ^a\in (id_p)_*(T_p\Sigma )^a \ {\text{and}} \ \eta ^b\in (id_p)_*(T_p\Lambda )^b \Big \}. \\&{g}^4_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, 0):\xi ^a \in (id_p)_*(T_p\Lambda )^a \ {\text{and}} \ \eta ^b\in (id_p)_*(T_p\Sigma )^b \Big \}.\\&{g}^5_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, \sigma _5):\xi ^a={\mathfrak{a}}_5\zeta ^a+{\mathfrak{b}}_5\mu ^a, \zeta ^a\in (id_p)_*(T_p\Sigma )^a \ \\&\quad {\text{and}} \ \mu ^a\in (id_p)_*(T_p\Lambda )^a, {\mathfrak{a}}_5\ne 0, {\mathfrak{b}}_5\ne 0 \ {\text{and}} \ \eta ^b\in (id_p)_*(T_p\Sigma )^b\Big \} .\\&{g}^6_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, \sigma _6):\xi ^a\in (id_p)_*(T_p\Sigma )^a, \eta ^b={\mathfrak{a}}_6\zeta ^b+{\mathfrak{b}}_6\mu ^b, \\&\quad \zeta ^b\in (id_p)_*(T_p\Sigma )^b, \ \mu ^b\in (id_p)_*(T_p\Lambda )^b,\ {\mathfrak{a}}_6\ne 0\ {\text{and}}\ {\mathfrak{b}}_6\ne 0 \Big \}.\\&{g}^7_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, \sigma _7):\xi ^a={\mathfrak{a}}_7\zeta ^a+{\mathfrak{b}}_7\mu ^a, \zeta ^a\in (id_p)_*(T_p\Sigma )^a, \\&\quad \mu ^a\in (id_p)_*(T_p\Lambda )^a,\ {\mathfrak{a}}_7\ne 0, {\mathfrak{b}}_7\ne 0 {\text{and}} \ \eta ^b\in (id_p)_*(T_p\Lambda )^b\Big \}.\\&{g}^8_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, \sigma _8):\xi ^a\in (id_p)_*(T_p\Lambda )^a, \eta ^b={\mathfrak{a}}_8\zeta ^b+{\mathfrak{b}}_8\mu ^b, \\&\quad \zeta ^b\in (id_p)_*(T_p\Sigma )^b, \ \mu ^b\in (id_p)_*(T_p\Lambda )^b,\ {\mathfrak{a}}_8\ne 0\ {\text{and}}\ {\mathfrak{b}}_8\ne 0 \Big \}.\\&{g}^9_{ab_{|_p}}=\Big \{ (\xi ^a, \eta ^b, \sigma _9):\xi ^a={\mathfrak{a}}_9\zeta ^a+{\mathfrak{b}}_9\mu ^a, \ {\mathfrak{a}}_9\ne 0, {\mathfrak{b}}_9\ne 0 ,\\&\quad \zeta ^a\in (id_p)_*(T_p\Sigma )^a, \ \mu ^a\in (id_p)_*(T_p\Lambda )^a,\ \xi ^{\prime b}\\&\quad ={\mathfrak{a}}^\prime _9\zeta ^{\prime b}+{\mathfrak{b}}^\prime _9\mu ^{\prime b}, {\mathfrak{a}}^\prime _9\ne 0, {\mathfrak{b}}^\prime _9\ne 0, \ \zeta ^{\prime b}\in (id_p)_*(T_p\Sigma )^b \ \\&\quad {\text{and}} \ \mu ^{\prime a}\in (id_p)_*(T_p\Lambda )^b\Big \}. \end{aligned}$$

1.2 A.2 A Decomposition of \(g^{ab}\)

$$\begin{aligned}&g^{ab}_{ 1_{|_p}}=\Big \{ (\xi _a, \eta _b, \beta _1e^{-\Omega (p)}):\xi _a\in {(id_p)}^*{(T_p\Sigma )_a} \\&\quad {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Sigma )_b} \Big \}.\\&g^{ab}_{ 2_{|_p}}=\Big \{(\xi _a, \eta _b, \gamma _2e^{-\Omega (p)}):\xi _a\in (id_p)^*(T_p\Lambda )_a \\&\quad {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Lambda )_b} \Big \}. \\&g^{ab}_{ 3_{|_p}}=\Big \{ (\xi _a, \eta _b, 0):\xi _a\in (id_p)^*{(T_p\Sigma )_a}\ \ \\&\quad {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Lambda )_b} \Big \}. \\&g^{ab}_{ 4_{|_p}}=\Big \{(\xi _a, \eta _b, 0):\xi _a \in (id_p)^*{(T_p\Lambda )_a} \\&\quad {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Sigma )_b} \Big \}.\\&g^{ab}_{ 5_{|_p}}=\Big \{ (\xi _a, \eta _b,{\mathfrak{a}}_5\beta _5e^{-\Omega (p)}):\xi _a={\mathfrak{a}}_5\zeta _a+{\mathfrak{b}}\mu _a, \zeta _a\in (id_p)^*{(T_p\Sigma )_a}, \\&\quad \mu _a\in (id_p)^*{(T_p\Lambda )_a}, {\mathfrak{a}}\ne 0 \ {\text{and}}\ {\mathfrak{b}}\ne 0\ \eta _b\in (id_p)^*(T_p\Sigma )_b\Big \} .\\&g^{ab}_{ 6_{|_p}}=\Big \{ (\xi _a, \eta _b, \mathfrak{a_6}\beta _6e^{-\Omega (p)}):\xi _a\in (id_p)^*{(T_p\Sigma )_a} , \eta _b \\&\quad ={\mathfrak{a}}_6\zeta _b+{\mathfrak{b}}_6\mu _b, \ \zeta _b\in (id_p)^*{(T_p\Sigma )_b}, \mu _b\in (id_p)^*{(T_p\Lambda )_b},\ {\mathfrak{a}}_6\ne 0\ {\text{and}} \ {\mathfrak{b}}_6\ne 0\Big \}.\\&g^{ab}_{ 7_{|_p}}=\Big \{ (\xi _a, \eta _b, {\mathfrak{a}}_7\gamma _7e^{-\Omega (p)}):\xi _a={\mathfrak{a}}_7\zeta _a+{\mathfrak{b}}_7\mu _a, \\&\quad \zeta _a\in (id_p)^*{(T_p\Sigma )_a}, \ \mu _a\in (id_p)^*{(T_p\Lambda )_a},\ {\mathfrak{a}}_7\ne 0, {\mathfrak{b}}_7\ne 0 \ {\text{and}} \ \eta _b\in (id_p)^*{(T_p\Lambda )_b}\Big \}.\\&g^{ab}_{ 8_{|_p}}=\Big \{ (\xi _a, \eta _b, {\mathfrak{a}}_8\gamma _8e^{-\Omega (p)}):\xi _a\in (id_p)^*{(T_p\Lambda )_a}, \eta _b \\&\quad ={\mathfrak{a}}_8\zeta _b+{\mathfrak{b}}_8\mu _b, \ \zeta _b\in (id_p)^*{(T_p\Sigma )_b} \ {\text{and}} \ \mu _b\in (id_p)^*{(T_p\Lambda )_b},\ {\mathfrak{a}}_8\ne 0, {\mathfrak{b}}_8\ne 0\Big \}.\\&g^{ab}_{ 9_{|_p}}=\Big \{ (\xi _a, \eta _b, ({\mathfrak{a}}_9{\mathfrak{a}}^\prime _9\beta _9+{\mathfrak{b}}_9{\mathfrak{b}}^\prime _9\gamma _9)e^{-\Omega (p)}):\xi _a={\mathfrak{a}}_9\zeta _a+{\mathfrak{b}}_9\mu _a, \\&\quad {\mathfrak{a}}_9\ne 0, {\mathfrak{b}}_9\ne 0 ,\ \zeta _a\in (id_p)^*{(T_p\Sigma )_a},\ \mu ^a\in (id_p)^*{(T_p\Lambda )_a}, \eta _b\\&\quad ={\mathfrak{a}}^\prime _9\zeta ^\prime _b+{\mathfrak{b}}^\prime _9\mu ^\prime _b, {\mathfrak{a}}^\prime _9\ne 0, {\mathfrak{b}}^\prime _9\ne 0, \ \zeta ^\prime _ b\in (id_p)^*{(T_p\Sigma )_b} \\&\quad {\text{and}} \ \mu ^\prime _ b\in (id_p)^*{(T_p\Lambda )_b}\Big \}. \end{aligned}$$

1.3 A.3 A Decomposition of \(t_{ab}\)

$$\begin{aligned}&{t}^1_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, 0):\xi ^a\in {(id_p)}_*(T_p\Sigma )^a \ {\text{and}} \ \eta ^b\in (id_p)_*(T_p\Sigma )^b \Big \}.\\&{t}^2_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, \delta _2):\xi ^a\in (id_p)_*(T_p\Lambda )^a \ {\text{and}} \ \eta ^b\in (id_p)_*(T_p\Lambda )^b \Big \}. \\&{t}^3_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, 0):\xi ^a\in (id_p)_*(T_p\Sigma )^a \ {\text{and}} \ \eta ^b\in (id_p)_*(T_p\Lambda )^b \Big \}. \\&{t}^4_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, 0):\xi ^a \in (id_p)_*(T_p\Lambda )^a \ {\text{and}} \ \eta ^b\in (id_p)_*(T_p\Sigma )^b \Big \}.\\&{t}^5_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, 0):\xi ^a={\mathfrak{a}}_5\zeta ^a+{\mathfrak{b}}_5\mu ^a, \zeta ^a\in (id_p)_*(T_p\Sigma )^a \\&\quad {\text{and}}\ \mu ^a\in (id_p)_*(T_p\Lambda )^a, {\mathfrak{a}}_5\ne 0, {\mathfrak{b}}_5\ne 0 \ {\text{and}} \ \eta ^b\in (id_p)_*(T_p\Sigma )^b\Big \} .\\&{t}^6_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, 0):\xi ^a\in (id_p)_*(T_p\Sigma )^a, \eta ^b={\mathfrak{a}}_6\zeta ^b+{\mathfrak{b}}_6\mu ^b, \\&\quad \zeta ^b\in (id_p)_*(T_p\Sigma )^b, \ \mu ^b\in (id_p)_*(T_p\Lambda )^b,\ {\mathfrak{a}}_6\ne 0\ {\text{and}}\ {\mathfrak{b}}_6\ne 0 \Big \}.\\&{t}^7_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, {\mathfrak{b}}_7\delta _7):\xi ^a={\mathfrak{a}}_7\zeta ^a+{\mathfrak{b}}_7\mu ^a, \zeta ^a\in (id_p)_*(T_p\Sigma )^a, \\&\quad \mu ^a\in (id_p)_*(T_p\Lambda )^a,\ {\mathfrak{a}}_7\ne 0, {\mathfrak{b}}_7\ne 0 \ {\text{and}} \ \eta ^b\in (id_p)_*(T_p\Lambda )^b\Big \}.\\&{t}^8_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, {\mathfrak{b}}_8\delta _8):\xi ^a\in (id_p)_*(T_p\Lambda )^a, \eta ^b={\mathfrak{a}}_8\zeta ^b+{\mathfrak{b}}_8\mu ^b, \ \zeta ^b\in (id_p)_*(T_p\Sigma )^b, \\&\quad \mu ^b\in (id_p)_*(T_p\Lambda )^b,\ {\mathfrak{a}}_8\ne 0\ {\text{and}}\ {\mathfrak{b}}_8\ne 0 \Big \}.\\&{t}^9_{ab_{|_p}}=\Big \{ (\xi ^a, \eta ^b, {\mathfrak{b}}_9{\mathfrak{b}}^\prime _9\delta _9):\xi ^a={\mathfrak{a}}_9\zeta ^a+{\mathfrak{b}}_9\mu ^a, \ {\mathfrak{a}}_9\ne 0, {\mathfrak{b}}_9\ne 0 ,\ \zeta ^a \\&\quad \in (id_p)_*(T_p\Sigma )^a, \ \mu ^a\in (id_p)_*(T_p\Lambda )^a,\ \eta ^b={\mathfrak{a}}^\prime _9\zeta ^{\prime b}+{\mathfrak{b}}^\prime _9\mu ^{\prime b}, {\mathfrak{a}}^\prime _9\ne 0, {\mathfrak{b}}^\prime _9\ne 0, \ \zeta ^{\prime b} \\&\quad \in (id_p)_*(T_p\Sigma )^b \ {\text{and}} \ \mu ^{\prime b}\in (id_p)_*(T_p\Lambda )^b\Big \}. \end{aligned}$$

It worth noting that in the case under consideration \(e^{\Omega (p)}({\hat{h}}_{ab}+t_{ab})=(\gamma _{ab}-n_an_b) {t}^2_{ab_{|_p}}\xi ^a\eta ^b=\delta _2\).

$$\begin{aligned}&{t}^7_{ab_{|_p}}({\mathfrak{a}}_9\zeta ^a+{\mathfrak{b}}_9\mu ^a)\eta ^b={\mathfrak{b}}_7{t}^7_{ab_{|p}}\mu ^a\eta ^b={\mathfrak{b}}_7\delta _7.\\&{t}^8_{ab_{|_p}}\xi ^a({\mathfrak{a}}_8\zeta ^b+{\mathfrak{b}}_8\mu ^b)={\mathfrak{b}}_8{t}^8_{ab_{|p}}\xi ^a\eta ^b={\mathfrak{b}}_8\delta _8.\\&{t}^9_{ab_{|_p}}({\mathfrak{a}}_9\zeta ^a+{\mathfrak{b}}_9\mu ^a)({\mathfrak{a}}^\prime _9{\zeta ^\prime }^b+{\mathfrak{b}}^\prime _9{\mu ^\prime }^b) ={\mathfrak{b}}_9{\mathfrak{b}}^\prime _9{t}^9_{ab_{|_p}}\mu ^a{\mu ^\prime }^b={\mathfrak{b}}_9{\mathfrak{b}}^\prime _9\delta _9. \end{aligned}$$

1.4 A.4 An Expansion of \(t_{ab}\)

$$\begin{aligned}&{{\mathfrak{t}}}^1_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, \theta _1):\xi ^a\in {(id_p)}_*(T_p\Sigma )^a \ \\&\quad {\text{and}} \ \eta ^b\in (id_p)_*(T_p\Sigma )^b \Big \}.\\&{{\mathfrak{t}}}^2_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, \delta _2):\xi ^a\in (id_p)_*(T_p\Lambda )^a \\&\quad {\text{and}} \ \eta ^b\in (id_p)_*(T_p\Lambda )^b \Big \}. \\&{{\mathfrak{t}}}^3_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, 0):\xi ^a\in (id_p)_*(T_p\Sigma )^a \ \\&\quad {\text{and}} \ \eta ^b\in (id_p)_*(T_p\Lambda )^b \Big \}. \\&{{\mathfrak{t}}}^4_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, 0):\xi ^a \in (id_p)_*(T_p\Lambda )^a \ \\&\quad {\text{and}} \ \eta ^b\in (id_p)_*(T_p\Sigma )^b \Big \}.\\&{{\mathfrak{t}}}^5_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, {\mathfrak{a}}_5\theta _5):\xi ^a={\mathfrak{a}}_5\zeta ^a+{\mathfrak{b}}_5\mu ^a, \zeta ^a\in (id_p)_*(T_p\Sigma )^a \\&\quad {\text{and}} \ \mu ^a\in (id_p)_*(T_p\Lambda )^a, {\mathfrak{a}}_5\ne 0, {\mathfrak{b}}_5\ne 0 \ \\&\quad {\text{and}} \ \eta ^b\in (id_p)_*(T_p\Sigma )^b\Big \} .\\&{{\mathfrak{t}}}^6_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, {\mathfrak{a}}_6\theta _6):\xi ^a\in (id_p)_*(T_p\Sigma )^a, \eta ^b={\mathfrak{a}}_6\\&\quad \zeta ^b+{\mathfrak{b}}_6\mu ^b, \ \zeta ^b\in (id_p)_*(T_p\Sigma )^b, \ \mu ^b\in (id_p)_*(T_p\Lambda )^b,\ {\mathfrak{a}}_6\ne 0\ {\text{and}}\ {\mathfrak{b}}_6\ne 0 \Big \}.\\&{{\mathfrak{t}}}^7_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, \delta _7):\xi ^a={\mathfrak{a}}_7\zeta ^a+{\mathfrak{b}}_7\mu ^a, \\&\quad \zeta ^a\in (id_p)_*(T_p\Sigma )^a, \ \mu ^a\in (id_p)_*(T_p\Lambda )^a,\ {\mathfrak{a}}_7\ne 0, {\mathfrak{b}}_7\ne 0 {\text{and}} \ \eta ^b\in (id_p)_*(T_p\Lambda )^b\Big \}.\\&{{\mathfrak{t}}}^8_{ab_{|_p}}=\Big \{(\xi ^a, \eta ^b, \delta _8):\xi ^a\in (id_p)_*(T_p\Lambda )^a, \eta ^b={\mathfrak{a}}_8\zeta ^b+{\mathfrak{b}}_8\mu ^b, \\&\quad \ \zeta ^b\in (id_p)_*(T_p\Sigma )^b, \ \mu ^b\in (id_p)_*(T_p\Lambda )^b,\ {\mathfrak{a}}_8\ne 0\ {\text{and}}\ {\mathfrak{b}}_8\ne 0 \Big \}.\\&{{\mathfrak{t}}}^9_{ab_{|_p}}=\Big \{ (\xi ^a, \eta ^b, {\mathfrak{a}}_9{\mathfrak{a}}^\prime _9\theta _9+{\mathfrak{b}}_9{\mathfrak{b}}^\prime _9\delta _9):\xi ^a={\mathfrak{a}}_9\zeta ^a+{\mathfrak{b}}_9\mu ^a, \ {\mathfrak{a}}_9\ne 0, {\mathfrak{b}}_9\ne 0 ,\\&\quad \zeta ^a\in (id_p)_*(T_p\Sigma )^a, \ \mu ^a\in (id_p)_*(T_p\Lambda )^a,\ \eta ^b={\mathfrak{a}}^\prime _9\zeta ^{\prime b}+{\mathfrak{b}}^\prime _9\mu ^{\prime b}, {\mathfrak{a}}^\prime _9\ne 0, {\mathfrak{b}}^\prime _9\ne 0, \ \zeta ^{\prime b} \\&\quad \in (id_p)_*(T_p\Sigma )^b \ {\text{and}} \ \mu ^{\prime b}\in (id_p)_*(T_p\Lambda )^b\Big \}. \end{aligned}$$

1.5 A.5 A Decomposition of \(h^{ab}\)

$$\begin{aligned}&h^{ab}_{ 1_{|_p}}=\Big \{ (\xi _a, \eta _b, \beta _1):\xi _a\in {(id_p)}^*{(T_p\Sigma )_a} \ \\&\quad {\text{and}} \ \eta _b\in (id_p)^*{(T_p\Sigma )_b} \Big \}.\\&h^{ab}_{ 2_{|_p}}=\Big \{(\xi _a, \eta _b, 0):\xi _a\in (id_p)^*(T_p\Lambda )_a \\&\quad {\text{and}} \ \eta _b\in (id_p)^*{(T_p\Lambda )_b} \Big \}. \\&h^{ab}_{ 3_{|_p}}=\Big \{ (\xi _a, \eta _b, 0):\xi _a\in (id_p)^*{(T_p\Sigma )_a}\ \ \\&\quad {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Lambda )_b} \Big \}. \\&h^{ab}_{ 4_{|_p}}=\Big \{(\xi _a, \eta _b, 0):\xi _a \in (id_p)^*{(T_p\Lambda )_a} \ \ \\&\quad {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Sigma )_b} \Big \}.\\&h^{ab}_{ 5_{|_p}}=\Big \{ (\xi _a, \eta _b,{\mathfrak{a}}_5\beta _5):\xi _a={\mathfrak{a}}_5\zeta _a+{\mathfrak{b}}\mu _a, \zeta _a\in (id_p)^*{(T_p\Sigma )_a} \ \\&\quad {\text{and}} \mu _a\in (id_p)^*{(T_p\Lambda )_a}\ {\mathfrak{a}}\ne 0, {\mathfrak{b}}\ne 0 \ \eta _b\in (id_p)^*(T_p\Sigma )_b\Big \} .\\&h^{ab}_{ 6_{|_p}}=\Big \{ (\xi _a, \eta _b, {\mathfrak{a}}_6\beta _6):\xi _a\in (id_p)^*{(T_p\Sigma )_a} , \eta _b={\mathfrak{a}}_6\zeta _b+{\mathfrak{b}}_6\mu _b, \\&\quad \zeta _b\in (id_p)^*{(T_p\Sigma )_b}, \mu _b\in (id_p)^*{(T_p\Lambda )_b},\ {\mathfrak{a}}_6\ne 0\ {\text{and}} \ {\mathfrak{b}}_6\ne 0\Big \}.\\&h^{ab}_{ 7_{|_p}}=\Big \{ (\xi _a, \eta _b, 0):\xi _a={\mathfrak{a}}_7\zeta _a+{\mathfrak{b}}_7\mu _a, \zeta _a\in (id_p)^*{(T_p\Sigma )_a},\\&\quad \ \mu _a\in (id_p)^*{(T_p\Lambda )_a},\ {\mathfrak{a}}_7\ne 0, {\mathfrak{b}}_7\ne 0 \ {\text{and}} \ \eta _b\in (id_p)^*{(T_p\Lambda )_b}\Big \}.\\&h^{ab}_{ 8_{|_p}}=\Big \{ (\xi _a, \eta _b, 0):\xi _a\in (id_p)^*{(T_p\Lambda )_a}, \eta _b={\mathfrak{a}}_8\zeta _b\\&\quad +{\mathfrak{b}}_8\mu _b, \ \zeta _b\in (id_p)^*{(T_p\Sigma )_b} \ {\text{and}} \ \mu _b\in (id_p)^*{(T_p\Lambda )_b},\ {\mathfrak{a}}_8\ne 0, {\mathfrak{b}}_8\ne 0\Big \}.\\&h^{ab}_{ 9_{|_p}}=\Big \{(\xi _a, \eta _b, {\mathfrak{a}}_9{\mathfrak{a}}^\prime _9\beta _9):\xi _a={\mathfrak{a}}_9\zeta _a+{\mathfrak{b}}_9\mu _a, \ {\mathfrak{a}}_9\ne 0, {\mathfrak{b}}_9\ne 0 ,\ \zeta _a\in (id_p)^*{(T_p\Sigma )_a},\\&\quad \mu _a\in (id_p)^*{(T_p\Lambda )_a},\eta _b={\mathfrak{a}}^\prime _9\zeta ^\prime _b+{\mathfrak{b}}^\prime _9\mu ^\prime _b, {\mathfrak{a}}^\prime _9\ne 0, {\mathfrak{b}}^\prime _9\ne 0, \ \zeta ^\prime _ b\in (id_p)^*{(T_p\Sigma )_b} \ {\text{and}} \ \mu ^\prime _ b\in (id_p)^*{(T_p\Lambda )_b}\Big \}. \end{aligned}$$

1.6 A.6 An Expansion of \(h^{ab}\)

$$\begin{aligned}&{{\mathfrak{h}} }^{ab}_{1|_p}=\Big \{ (\xi _a, \eta _b, \beta _1):\xi _a\in {(id_p)}^*{(T_p\Sigma )_a} \\&\quad {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Sigma )_b} \Big \}.\\&{{\mathfrak{h}} }^{ab}_{2|_p}=\Big \{(\xi _a, \eta _b, \gamma _2):\xi _a\in (id_p)^*(T_p\Lambda )_a \\&\quad {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Lambda )_b} \Big \}.\\&{{\mathfrak{h}} }^{ab}_{3|_p}=\Big \{ (\xi _a, \eta _b, 0):\xi _a\in (id_p)^*{(T_p\Sigma )_a}\\&\quad {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Lambda )_b} \Big \}. \\&{{\mathfrak{h}} }^{ab}_{4|_p}=\Big \{(\xi _a, \eta _b, 0):\xi _a \in (id_p)^*{(T_p\Lambda )_a} \\&\quad {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Sigma )_b} \Big \}.\\&{{\mathfrak{h}} }^{ab}_{5|_p}=\Big \{ (\xi _a, \eta _b,{\mathfrak{a}}_5\beta _5):\xi _a={\mathfrak{a}}_5\zeta _a+{\mathfrak{b}}\mu _a, \zeta _a\in (id_p)^*{(T_p\Sigma )_a} \\&\quad {\text{and}}\ \mu _a\in (id_p)^*{(T_p\Lambda )_a}\ {\mathfrak{a}}\ne 0, {\mathfrak{b}}\ne 0 \\&\quad \eta _b\in (id_p)^*(T_p\Sigma )_b\Big \} .\\&{{\mathfrak{h}} }^{ab}_{6|_p}=\Big \{ (\xi _a, \eta _b, {\mathfrak{a}}_6\beta _6):\xi _a\in (id_p)^*{(T_p\Sigma )_a} , \eta _b={\mathfrak{a}}_6\zeta _b+{\mathfrak{b}}_6\mu _b, \ \zeta _b\in (id_p)^*{(T_p\Sigma )_b},\\&\quad \mu _b\in (id_p)^*{(T_p\Lambda )_b},{\mathfrak{a}}_6\ne 0\ {\text{and}} \ {\mathfrak{b}}_6\ne 0\Big \}.\\&{{\mathfrak{h}} }^{ab}_{7|_p}=\Big \{ (\xi _a, \eta _b, {\mathfrak{a}}_7\gamma _7):\xi _a={\mathfrak{a}}_7\zeta _a+{\mathfrak{b}}_7\mu _a, \zeta _a\in (id_p)^*{(T_p\Sigma )_a}, \\&\quad \mu _a\in (id_p)^*{(T_p\Lambda )_a},\ {\mathfrak{a}}_7\ne 0, {\mathfrak{b}}_7\ne 0 \ {\text{and}} \ \eta _b\in (id_p)^*{(T_p\Lambda )_b}\Big \}.\\&{{\mathfrak{h}} }^{ab}_{8|_p}=\Big \{ (\xi _a, \eta _b, {\mathfrak{a}}_8\gamma _8):\xi _a\in (id_p)^*{(T_p\Lambda )_a}, \eta _b={\mathfrak{a}}_8\zeta _b+{\mathfrak{b}}_8\mu _b, \ \zeta _b\in (id_p)^*{(T_p\Sigma )_b} \ {\text{and}} \\&\quad \mu _b\in (id_p)^*{(T_p\Lambda )_b}, \ {\mathfrak{a}}_8\ne 0, {\mathfrak{b}}_8\ne 0\Big \}.\\&{{\mathfrak{h}} }^{ab}_{9|_p}=\Big \{(\xi _a, \eta _b, ({\mathfrak{a}}_9{\mathfrak{a}}^\prime _9\beta _9+{\mathfrak{b}}_9{\mathfrak{b}}^\prime _9\gamma _9)):\xi _a={\mathfrak{a}}_9\zeta _a\\&\quad +{\mathfrak{b}}_9\mu _a, \ {\mathfrak{a}}_9\ne 0, {\mathfrak{b}}_9\ne 0 ,\ \zeta _a\in (id_p)^*{(T_p\Sigma )_a},\\&\quad \mu _a\in (id_p)^*{(T_p\Lambda )_a},\eta _b={\mathfrak{a}}^\prime _9\zeta ^\prime _b+{\mathfrak{b}}^\prime _9\mu ^\prime _b, {\mathfrak{a}}^\prime _9\ne 0, {\mathfrak{b}}^\prime _9\ne 0, \ \zeta ^\prime _ b\in (id_p)^*{(T_p\Sigma )_b} \ {\text{and}} \ \mu ^\prime _ b\in (id_p)^*{(T_p\Lambda )_b}\Big \}. \end{aligned}$$

1.7 A.7 A Decomposition of \(R^N_{ab}\)

By equation (4.3.1) we can decompose \(R^N_{ab}\) into the following sets.

$$\begin{aligned}&{R}^{N1}_{ab_{|_p}}=\Big \{ (\xi _a, \eta _b, 0):\xi _a\in {(id_p)}^*{(T_p\Sigma )_a} \\&\qquad {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Sigma )_b} \Big \}.\\&{R}^{N2}_{ab_{|_p}}=\Big \{(\xi _a, \eta _b, 4\pi G \rho \delta _2):\xi _a\in (id_p)^*(T_p\Lambda )_a \ \ {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Lambda )_b} \Big \}. \\&{R}^{N3}_{ab_{|_p}}=\Big \{ (\xi _a, \eta _b, 0):\xi _a\in (id_p)^*{(T_p\Sigma )_a}\\&\qquad {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Lambda )_b} \Big \}. \\&{R}^{N4}_{ab_{|_p}}=\Big \{(\xi _a, \eta _b, 0):\xi _a \in (id_p)^*{(T_p\Lambda )_a} \\&\qquad {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Sigma )_b} \Big \}.\\&{R}^{N5}_{ab_{|_p}}=\Big \{ (\xi _a, \eta _b, 0):\xi _a={\mathfrak{a}}_5\zeta _a+{\mathfrak{b}}\mu _a, \zeta _a\in (id_p)^*{(T_p\Sigma )_a}, \\&\qquad \mu _a\in (id_p)^*{(T_p\Lambda )_a}\ {\mathfrak{a}}\ne 0 \ {\text{and}}\ {\mathfrak{b}}\ne 0 \ \eta _b\in (id_p)^*(T_p\Sigma )_b\Big \} .\\&{R}^{N6}_{ab_{|_p}}=\Big \{ (\xi _a, \eta _b, 0):\xi _a\in (id_p)^*{(T_p\Sigma )_a} , \eta _b\\&\qquad ={\mathfrak{a}}_6\zeta _b+{\mathfrak{b}}_6\mu _b, \ \zeta _b\in (id_p)^*{(T_p\Sigma )_b}, \mu _b\in (id_p)^*{(T_p\Lambda )_b},\ {\mathfrak{a}}_6\ne 0\ {\text{and}} \ {\mathfrak{b}}_6\ne 0\Big \}.\\&{R}^{N7}_{ab_{|_p}}=\Big \{ (\xi _a, \eta _b, 4\pi G \rho {\mathfrak{b}}_7 \delta _7):\xi _a={\mathfrak{a}}_7\zeta _a+{\mathfrak{b}}_7\mu _a, \zeta _a\in (id_p)^*{(T_p\Sigma )_a}, \\&\qquad \mu _a\in (id_p)^*{(T_p\Lambda )_a},\ {\mathfrak{a}}_7\ne 0, {\mathfrak{b}}_7\ne 0 \ {\text{and}} \ \eta _b\in (id_p)^*{(T_p\Lambda )_b}\Big \}.\\&{R}^{N8}_{ab_{|_p}}=\Big \{ (\xi _a, \eta _b, 4\pi G \rho {\mathfrak{a}}_8 \delta _8):\xi _a\in (id_p)^*{(T_p\Lambda )_a}, \eta _b\\&\quad ={\mathfrak{a}}_8\zeta _b+{\mathfrak{b}}_8\mu _b, \ \zeta _b\in (id_p)^*{(T_p\Sigma )_b} \ {\text{and}} \ \mu _b\in (id_p)^*{(T_p\Lambda )_b},\ {\mathfrak{a}}_8\ne 0, {\mathfrak{b}}_8\ne 0\Big \}.\\&{R}^{N9}_{ab_{|_p}}=\Big \{ (\xi _a, \eta _b, 4\pi G \rho {\mathfrak{b}}_9{\mathfrak{b}}^\prime _9 \delta _9):\xi _a={\mathfrak{a}}_9\zeta _a+{\mathfrak{b}}_9\mu _a, \ {\mathfrak{a}}_9\ne 0, {\mathfrak{b}}_9\ne 0 ,\ \\&\qquad \zeta _a\in (id_p)^*{(T_p\Sigma )_a},\\&\quad \mu _a\in (id_p)^*{(T_p\Lambda )_a},\eta _b={\mathfrak{a}}^\prime _9\zeta ^\prime _b+{\mathfrak{b}}^\prime _9\mu ^\prime _b, {\mathfrak{a}}^\prime _9\ne 0, {\mathfrak{b}}^\prime _9\ne 0, \ \zeta ^\prime _ b\in (id_p)^*{(T_p\Sigma )_b} \ {\text{and}} \ \mu ^\prime _ b\in (id_p)^*{(T_p\Lambda )_b}\Big \}. \end{aligned}$$

1.8 A.8 A Decomposition of \(R_{ab}\)

From [48], it follows thatFootnote 33

$$\begin{aligned}&{R}^{1}_{ab_{|_p}}=\Big \{ (\xi _a, \eta _b, d_1):\xi _a\in {(id_p)}^*{(T_p\Sigma )_a} \\&\qquad {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Sigma )_b} \Big \}.\\&{R}^{2}_{ab_{|_p}}=\Big \{(\xi _a, \eta _b, d_2+4\pi G \rho \delta _2):\xi _a\in (id_p)^*(T_p\Lambda )_a \\&\qquad {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Lambda )_b} \Big \}. \\&{R}^{3}_{ab_{|_p}}=\Big \{ (\xi _a, \eta _b, d_3):\xi _a\in (id_p)^*{(T_p\Sigma )_a}\\&\qquad {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Lambda )_b} \Big \}. \\&{R}^{4}_{ab_{|_p}}=\Big \{(\xi _a, \eta _b, d_4):\xi _a \in (id_p)^*{(T_p\Lambda )_a} \\&\qquad {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Sigma )_b} \Big \}.\\&{R}^{5}_{ab_{|_p}}=\Big \{ (\xi _a, \eta _b, d_5):\xi _a={\mathfrak{a}}_5\zeta _a+{\mathfrak{b}}\mu _a, \zeta _a\in (id_p)^*{(T_p\Sigma )_a}, \\&\qquad \mu _a\in (id_p)^*{(T_p\Lambda )_a}\ {\mathfrak{a}}\ne 0 \ {\text{and}}\ {\mathfrak{b}}\ne 0 \ \eta _b\in (id_p)^*(T_p\Sigma )_b\Big \} .\\&{R}^{6}_{ab_{|_p}}=\Big \{ (\xi _a, \eta _b, d_6):\xi _a\in (id_p)^*{(T_p\Sigma )_a} , \eta _b={\mathfrak{a}}_6\zeta _b+{\mathfrak{b}}_6\mu _b, \ \zeta _b\in (id_p)^*{(T_p\Sigma )_b},\\&\qquad \mu _b\in (id_p)^*{(T_p\Lambda )_b},\ {\mathfrak{a}}_6\ne 0\ {\text{and}} \ {\mathfrak{b}}_6\ne 0\Big \}.\\&{R}^{7}_{ab_{|_p}}=\Big \{ (\xi _a, \eta _b, d_7+4\pi G \rho {\mathfrak{b}}_7 \delta _8):\xi _a={\mathfrak{a}}_7\zeta _a+{\mathfrak{b}}_7\mu _a, \zeta _a\in (id_p)^*{(T_p\Sigma )_a}, \\&\qquad \mu _a\in (id_p)^*{(T_p\Lambda )_a},\ {\mathfrak{a}}_7\ne 0, {\mathfrak{b}}_7\ne 0 \ \\&\qquad {\text{and}} \ \eta _b\in (id_p)^*{(T_p\Lambda )_b}\Big \}.\\&{R}^{8}_{ab_{|_p}}=\Big \{ (\xi _a, \eta _b, d_8+4\pi G \rho {\mathfrak{a}}_8 \delta _8):\xi _a\in (id_p)^*{(T_p\Lambda )_a}, \eta _b\\&\quad ={\mathfrak{a}}_8\zeta _b+{\mathfrak{b}}_8\mu _b, \ \zeta _b\in (id_p)^*{(T_p\Sigma )_b} \ {\text{and}} \ \mu _b\in (id_p)^*{(T_p\Lambda )_b},\ {\mathfrak{a}}_8\ne 0, {\mathfrak{b}}_8\ne 0\Big \}.\\&{R}^{9}_{ab_{|_p}}=\Big \{ (\xi _a, \eta _b, d_9+4\pi G \rho {\mathfrak{b}}_9{\mathfrak{b}}^\prime _9 \delta _9):\xi _a\\&\quad ={\mathfrak{a}}_9\zeta _a+{\mathfrak{b}}_9\mu _a, \ {\mathfrak{a}}_9\ne 0, {\mathfrak{b}}_9\ne 0 ,\ \zeta _a\in (id_p)^*{(T_p\Sigma )_a},\ \quad \mu _a\in (id_p)^*{(T_p\Lambda )_a},\eta _b={\mathfrak{a}}^\prime _9\zeta ^\prime _b+{\mathfrak{b}}^\prime _9\mu ^\prime _b, {\mathfrak{a}}^\prime _9\ne 0, {\mathfrak{b}}^\prime _9\ne 0, \ \zeta ^\prime _ b\in (id_p)^*{(T_p\Sigma )_b} \ {\text{and}} \ \mu ^\prime _ b\in (id_p)^*{(T_p\Lambda )_b}\Big \}. \end{aligned}$$

1.9 A.9 An Expansion of \(R^N_{ab}\)

$$\begin{aligned}&{{\mathfrak{R}}}^1_{ab_{|_p}}=\Big \{ (\xi _a, \eta _b, d_1):\xi _a\in {(id_p)}^*{(T_p\Sigma )_a} \\&\quad {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Sigma )_b} \Big \}.\\&{{\mathfrak{R}}}^2_{ab_{|_p}}=\Big \{(\xi _a, \eta _b, d_2+4\pi G \rho \delta _2):\xi _a\in (id_p)^*(T_p\Lambda )_a \\&\quad {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Lambda )_b} \Big \}. \\&{{\mathfrak{R}}}^3_{ab_{|_p}}=\Big \{ (\xi _a, \eta _b, d_3):\xi _a\in (id_p)^*{(T_p\Sigma )_a}\\&\quad {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Lambda )_b} \Big \}. \\&{{\mathfrak{R}}}^4_{ab_{|_p}}=\Big \{(\xi _a, \eta _b, d_4):\xi _a \in (id_p)^*{(T_p\Lambda )_a} \\&\quad {\text{and}} \ \ \eta _b\in (id_p)^*{(T_p\Sigma )_b} \Big \}.\\&{{\mathfrak{R}}}^5_{ab_{|_p}}=\Big \{ (\xi _a, \eta _b, d_5):\xi _a={\mathfrak{a}}_5\zeta _a+{\mathfrak{b}}\\&\quad \mu _a,\zeta _a\in (id_p)^*{(T_p\Sigma )_a}, \ \mu _a\in (id_p)^*{(T_p\Lambda )_a}\ {\mathfrak{a}}\ne 0 \ {\text{and}}\ {\mathfrak{b}}\ne 0 \ \eta _b\in (id_p)^*(T_p\Sigma )_b\Big \} .\\&{{\mathfrak{R}}}^6_{ab_{|_p}}=\Big \{ (\xi _a, \eta _b, d_6):\xi _a\in (id_p)^*{(T_p\Sigma )_a} , \eta _b={\mathfrak{a}}_6\zeta _b+{\mathfrak{b}}_6\mu _b, \ \zeta _b\in (id_p)^*{(T_p\Sigma )_b}, \\&\quad \mu _b\in (id_p)^*{(T_p\Lambda )_b},\ {\mathfrak{a}}_6\ne 0\ {\text{and}} \ {\mathfrak{b}}_6\ne 0\Big \}.\\&{{\mathfrak{R}}}^7_{ab_{|_p}}=\Big \{ (\xi _a, \eta _b, d_7+4\pi G \rho {\mathfrak{b}}_7 \delta _7):\xi _a={\mathfrak{a}}_7\zeta _a\\&\quad +{\mathfrak{b}}_7\mu _a, \zeta _a\in (id_p)^*{(T_p\Sigma )_a}, \ \mu _a\in (id_p)^*{(T_p\Lambda )_a},\ {\mathfrak{a}}_7\ne 0, {\mathfrak{b}}_7\ne 0 \ {\text{and}} \ \eta _b\in (id_p)^*{(T_p\Lambda )_b}\Big \}.\\&{{\mathfrak{R}}}^8_{ab_{|_p}}=\Big \{ (\xi _a, \eta _b, d_8+4\pi G \rho {\mathfrak{a}}_8 \delta _8):\xi _a\in (id_p)^*{(T_p\Lambda )_a}, \eta _b={\mathfrak{a}}_8\zeta _b\\&\quad +{\mathfrak{b}}_8\mu _b, \ \zeta _b\in (id_p)^*{(T_p\Sigma )_b} \ {\text{and}} \ \mu _b\in (id_p)^*{(T_p\Lambda )_b},\ {\mathfrak{a}}_8\ne 0, {\mathfrak{b}}_8\ne 0\Big \}.\\&{{\mathfrak{R}}}^9_{ab_{|_p}}=\Big \{ (\xi _a, \eta _b, d_9+4\pi G \rho {\mathfrak{b}}_9{\mathfrak{b}}^\prime _9 \delta _9):\xi _a={\mathfrak{a}}_9\zeta _a+{\mathfrak{b}}_9\mu _a, \ {\mathfrak{a}}_9\ne 0, {\mathfrak{b}}_9\ne 0 ,\\&\quad \zeta _a\in (id_p)^*{(T_p\Sigma )_a}, \quad \mu _a\in (id_p)^*{(T_p\Lambda )_a},\eta _b={\mathfrak{a}}^\prime _9\zeta ^\prime _b+{\mathfrak{b}}^\prime _9\mu ^\prime _b, {\mathfrak{a}}^\prime _9\ne 0, {\mathfrak{b}}^\prime _9\ne 0, \ \zeta ^\prime _ b\in (id_p)^*{(T_p\Sigma )_b} \ {\text{and}} \ \mu ^\prime _ b\in (id_p)^*{(T_p\Lambda )_b}\Big \}. \end{aligned}$$

1.10 A.10 A Decomposition of \(g_{ab}\)

$$ \begin{aligned} & \sigma_1=g^1_{ab_{|p}}\xi^a\eta^b=-(N^2-\gamma_{ij}N^iN^j)d_at^1d_bt^1\xi^a\eta^b+\gamma^1_{ij}d_ax^id_bx^j\xi^a\eta^b+\gamma^1_{ij}N^jd_ax^id_bt\xi^a\eta^b\ +\gamma^1_{ij}N^id_atd_bx^j\xi^a\eta^b=\iota_1.\\ & \alpha_2=g^2_{ab_{|p}}\xi^a\eta^b=-(N^2-\gamma_{ij}N^iN^j)d_at^2d_bt^2_{|p}\xi^a\eta^b+\gamma^2_{ij}d_ax^id_bx^j_{|p}\xi^a\eta^b+\gamma^2_{ij}N^jd_ax^id_bt_{|p}\xi^a\eta^b+\gamma^2_{ij}N^id_atd_bx^j_{|p}\xi^a\eta^b=-(N^2-\gamma_{ij}N^iN^j)_{|p}\delta_2.\\ & \sigma_3=g^3_{ab_{|p}}\xi^a\eta^b=-(N^2-\gamma_{ij}N^iN^j)d_at^3d_bt^3\xi^a\eta^b+\gamma^3_{ij}d_ax^id_bx^j\xi^a\eta^b+\gamma^3_{ij}N^jd_ax^id_bt\xi^a\eta^b+\gamma^3_{ij}N^id_atd_bx^j\xi^a\eta^b=\epsilon_3.\\ & \sigma_4=g^4_{ab_{|p}}\xi^a\eta^b=-(N^2-\gamma_{ij}N^iN^j)d_at^4d_bt^4\xi^a\eta^b+\gamma^4_{ij}d_ax^id_bx^j\xi^a\eta^b+\gamma^4_{ij}N^jd_ax^id_bt\xi^a\eta^b+\gamma^4_{ij}N^id_atd_bx^j\xi^a\eta^b=\rho_4.\\ & \sigma_5=g^5_{ab_{|p}}\xi^a\eta^b=-(N^2-\gamma_{ij}N^iN^j)d_at^5d_bt^5_{|p}({\mathfrak{a}}_5\zeta^a+{\mathfrak{b}}_5\mu^a)\eta^b+\gamma^5_{ij}d_ax^id_bx^j_{|p}({\mathfrak{a}}_5\zeta^a+{\mathfrak{b}}_5\mu^a)\eta^b+\gamma^5_{ij}N^jd_ax^id_bt_{|p}({\mathfrak{a}}_5\zeta^a+{\mathfrak{b}}_5\mu^a)\eta^b+\gamma^5_{ij}N^id_atd_bx^j_{|p}({\mathfrak{a}}_5\zeta^a+{\mathfrak{b}}_5\mu^a)\eta^b={\mathfrak{a}}_5\gamma^5_{ij}d_ax^id_bx^j_{|p}\zeta^a\eta^b+{\mathfrak{b}}_5\gamma^5_{ij}N^id_atd_bx^j_{|p}\mu^a\eta^b={\mathfrak{a}}_5\iota_5+{\mathfrak{b}}_5\rho_5.\\ & \sigma_6=g^6_{ab_{|p}}\xi^a\eta^b=-(N^2-\gamma_{ij}N^iN^j)d_at^6d_bt^6_{|p}\xi^a({\mathfrak{a}}_6\zeta^b+{\mathfrak{b}}_6\mu^b)+\gamma^6_{ij}d_ax^id_bx^j_{|p}\xi^a({\mathfrak{a}}_6\zeta^b+{\mathfrak{b}}_6\mu^b)+\gamma^6_{ij}N^jd_ax^id_bt_{|p}({\mathfrak{a}}_6\zeta^a+{\mathfrak{b}}_6\mu^a)\eta^b+\gamma^6_{ij}N^id_atd_bx^j_{|p}\xi^a({\mathfrak{a}}_6\zeta^b+{\mathfrak{b}}_6\mu^b)={\mathfrak{a}}_6\gamma^6_{ij}d_ax^id_bx^j_{|p}\xi^a\zeta^b+{\mathfrak{b}}_6\gamma^6_{ij}N^jd_ax^id_bt_{|p}\xi^a\mu^b={\mathfrak{a}}_6\iota_6+{\mathfrak{b}}_6\epsilon_6.\\ & \sigma_7=g^7_{ab_{|p}}\xi^a\eta^b=-(N^2-\gamma_{ij}N^iN^j)d_at^7d_bt^7_{|p}({\mathfrak{a}}_7\zeta^a+{\mathfrak{b}}_7\mu^a)\eta^b+\gamma^7_{ij}d_ax^id_bx^j_{|p}({\mathfrak{a}}_5\zeta^a+{\mathfrak{b}}_7\mu^a)\eta^b+\gamma^7_{ij}N^jd_ax^id_bt_{|p}({\mathfrak{a}}_7\zeta^a+{\mathfrak{b}}_7\mu^a)\eta^b+\gamma^7_{ij}N^id_atd_bx^j_{|p}({\mathfrak{a}}_7\zeta^a+{\mathfrak{b}}_7\mu^a)\eta^b=-{\mathfrak{b}}_7(N^2-\gamma_{ij}N^iN^j)d_at^7d_bt^7_{|p}\mu^a\eta^b+{\mathfrak{a}}_7\gamma^7_{ij}N^jd_ax^id_bt_{|p}\zeta^a\eta^b={\mathfrak{a}}_7\epsilon_7-{\mathfrak{b}}_7(N^2-\gamma_{ij}N^iN^j)_{|p}\delta_7.\\ & \sigma_8=g^8_{ab_{|p}}\xi^a\eta^b=-(N^2-\gamma_{ij}N^iN^j)d_at^8d_bt^8_{|p}\xi^a({\mathfrak{a}}_8\zeta^b+{\mathfrak{b}}_8\mu^b)+\gamma^8_{ij}d_ax^id_bx^j_{|p}\xi^a({\mathfrak{a}}_8\zeta^b+{\mathfrak{b}}_8\mu^b)+\gamma^8_{ij}N^jd_ax^id_bt_{|p}({\mathfrak{a}}_8\zeta^a+{\mathfrak{b}}_8\mu^a)\eta^b+\gamma^8_{ij}N^id_atd_bx^j_{|p}\xi^a({\mathfrak{a}}_8\zeta^b+{\mathfrak{b}}_8\mu^b)=-(N^2-\gamma_{ij}N^iN^j)d_at^8d_bt^8_{|p}\xi^a\mu^b+{\mathfrak{b}}_8\gamma^8_{ij}N^jd_ax^id_bt_{|p}\xi^a\mu^b=-{\mathfrak{b}}_8(N^2-\gamma_{ij}N^iN^j)\delta_8+{\mathfrak{b}}_8\epsilon_8.\\ & \sigma_9=g^9_{ab_{|p}}\xi^a\eta^b=-(N^2-\gamma_{ij}N^iN^j)d_at^9d_bt^9_{|p}({\mathfrak{a}}_9\zeta^a+{\mathfrak{b}}_9\mu^a)({\mathfrak{a^\prime_9}}\zeta^{\prime b}+{\mathfrak{b^\prime_9}}\mu^{\prime b})+\gamma^9_{ij}d_ax^id_bx^j_{|p}({\mathfrak{a}}_9\zeta^a+{\mathfrak{b}}_9\mu^a)({\mathfrak{a^\prime_9}}\zeta^{\prime b}+{\mathfrak{b^\prime_9}}\mu^{\prime b})+\gamma^9_{ij}N^jd_ax^id_bt_{|p}({\mathfrak{a}}_9\zeta^a+{\mathfrak{b}}_9\mu^a)({\mathfrak{a^\prime_9}}\zeta^{\prime b}+{\mathfrak{b^\prime_9}}\mu^{\prime b})+\gamma^9_{ij}N^id_atd_bx^j_{|p}({\mathfrak{a}}_9\zeta^a+{\mathfrak{b}}_9\mu^a)({\mathfrak{a^\prime_9}}\zeta^{\prime b}+{\mathfrak{b^\prime_9}}\mu^{\prime b})=-(N^2-\gamma_{ij}N^iN^j){\mathfrak{b}}_9{\mathfrak{b^\prime_9}}+{\mathfrak{a}}_9{\mathfrak{a^\prime_9}}\iota_9+{\mathfrak{a}}_9{\mathfrak{b^\prime_9}}\epsilon_9+{\mathfrak{b}}_9{\mathfrak{a^\prime_9}}\rho_9. \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoumi, S. On the Continuity of Geometrized Newtonian Gravitation and General Relativity. Found Phys 51, 37 (2021). https://doi.org/10.1007/s10701-021-00419-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-021-00419-y

Keywords

Navigation