Skip to main content
Log in

Elementary Charge and Neutrino’s Mass from Planck Length

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

It is shown that the postulation of a minimum length for the horizons of a black hole leads to lower bounds for the electric charges and magnetic moments of elementary particles. If the minimum length has the order of the Planck scale, these bounds are given, respectively, by the electronic charge and by \(\mu \sim 10^{-21} \mu _B\). The latter implies that the masses of fundamental particles are bounded above by the Planck mass, and that the smallest non-zero neutrino mass is \(m_{\nu } \sim 10^{-2}\)eV. A precise estimation in agreement to the area quantisation of Loop Quantum Gravity predicts a mass for the lightest massive state in concordance with flavor oscillation measurements, and a Barbero–Immirzi parameter in accordance to horizon entropy estimations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This is valid for Dirac neutrinos in the minimally extended Standard Model with right-handed singlets. Majorana neutrinos do not have magnetic moments.

  2. The last digit in this figure is affected by higher order corrections to (5) that depend on the neutrinos mixing angles and Dirac phase [20]. Using the current best-fits for these quantities [21], we find \(m_{\nu } \approx 8.662\,(8) \times 10^{-3}\, \text {eV}\). Note, however, that higher order loops lead to corrections of the same order.

  3. We are using natural units \(\hbar = c = G = 1\), in which \(l_P = 1\).

  4. A general correspondence between angular momenta and spin network lines is conjectured in [24, 25].

References

  1. Dirac, P.A.M.: The Cosmological constants. Nature 139, 323 (1937)

    Article  ADS  Google Scholar 

  2. Eddington, A.S.: Fundamental Theory. Cambridge University Press, Cambridge (1946)

    MATH  Google Scholar 

  3. Marugán, G.A., Carneiro, S.: Holography and the large number hypothesis. Phys. Rev. D 65, 087303 (2002)

    Article  ADS  Google Scholar 

  4. Carneiro, S.: On the vacuum entropy and the cosmological constant. Int. J. Mod. Phys. D 12, 1669 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  5. ’t Hooft, G.: Dimensional reduction in quantum gravity. Conf. Proc. 930308, 284 (1993). (gr-qc/9310026)

    Google Scholar 

  6. Susskind, L.: The World as a hologram, J. Math. Phys. 36, 6377 (1995); Holography and cosmology. W. Fischler and L. Susskind. hep-th/9806039

  7. Easther, R., Lowe, D.: Holography, cosmology and the second law of thermodynamics. Phys. Rev. Lett. 82, 4967 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  8. Kaloper, N., Linde, A.: Cosmology versus holography. Phys. Rev. D 60, 103509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  9. Cohen, A.G., Kaplan, D.B., Nelson, A.E.: Effective field theory, black holes, and the cosmological constant. Phys. Rev. Lett. 82, 4971 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. Tavakol, R., Ellis, G.: On holography and cosmology. Phys. Lett. B 469, 37 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bousso, R.: The Holographic principle for general backgrounds. Class. Quantum Gravity 17, 997 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  12. Ng, Y.J.: From computation to black holes and space-time foam. Phys. Rev. Lett. 86, 2946 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  13. Padmanabhan, T.: The Holography of gravity encoded in a relation between entropy, horizon area and action for gravity. Gen. Relativ. Gravit. 34, 2029 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  14. Jacobson, T., Parentani, R.: Horizon entropy. Found. Phys. 33, 323 (2003)

    Article  MathSciNet  Google Scholar 

  15. Calmet, X., Carr, B., Winstanley, E.: Quantum Black Holes. Springer, New York (2014)

    Book  Google Scholar 

  16. Gambini, R., Olmedo, J., Pullin, J.: Quantum black holes in loop quantum gravity. Class. Quantum Gravity 31, 095009 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. Perez, A.: Black holes in loop quantum gravity. Rept. Prog. Phys. 80, 126901 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ashtekar, A., Olmedo, J., Singh, P.: Quantum transfiguration of Kruskal black holes. Phys. Rev. Lett. 121, 241301 (2018)

    Article  ADS  Google Scholar 

  19. Frolov, V.P., Zelnikov, A.: Introduction to Black Hole Physics. Oxford University Press, Oxford (2011)

    Book  Google Scholar 

  20. Giunti, C., Studenikin, A.: Neutrino electromagnetic interactions: a window to new physics. Rev. Mod. Phys. 87, 531 (2015). (Eqs. (4.1)-(4.6))

    Article  ADS  MathSciNet  Google Scholar 

  21. Esteban, I., et al.: Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity. JHEP 1701, 087 (2017). (Table 1)

    Article  ADS  Google Scholar 

  22. Ashtekar, A., Lewandowski, J.: Background independent quantum gravity: a status report. Class. Quantum Gravity 21, R53 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  23. Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  24. Krasnov, K.: Quanta of geometry and rotating black holes. Class. Quantum Gravity 16, L15 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  25. Bojowald, M.: Angular momentum in loop quantum gravity, gr-qc/0008054

  26. Rovelli, C., Smolin, L.: Discreteness of area and volume in quantum gravity. Nucl. Phys. B442, 593 (1995), Erratum: Nucl. Phys. B456, 753 (1995)

  27. Meissner, K.: Black hole entropy in loop quantum gravity. Class. Quantum Gravity 21, 5245 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  28. Ghosh, A., Mitra, P.: An improved lower bound on black hole entropy in the quantum geometry approach. Phys. Lett. B 616, 114 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  29. Corichi, A., Borja, E.F., Diaz-Polo, J.: Quantum geometry and microscopic black hole entropy. Class. Quantum Gravity 24, 243 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  30. Agulló, I., et al.: Detailed black hole state counting in loop quantum gravity. Phys. Rev. D 82, 084029 (2010)

    Article  ADS  Google Scholar 

  31. Mandl, F., Shaw, G.: Quantum Field Theory. Wiley, New York (1984). (chapters 9 and 10)

    MATH  Google Scholar 

Download references

Acknowledgements

I am thankful to G. A. Mena Marugán for a critical reading and helpful suggestions. My thanks also to J.C. Fabris, R. Gambini, P.C. de Holanda, J. Olmedo, O.L.G. Peres, C. Pigozzo, A. Saa, R. Woodard and J. Zanelli for useful discussions. Work partially supported by CNPq.

Funding

Funding was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant No. 307467/2017-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saulo Carneiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carneiro, S. Elementary Charge and Neutrino’s Mass from Planck Length. Found Phys 50, 1376–1381 (2020). https://doi.org/10.1007/s10701-020-00383-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-020-00383-z

Keywords

Navigation