Skip to main content
Log in

The Cosmological Constant From Planckian Fluctuations and the Averaging Procedure

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this paper I continue the investigation in Viaggiu (Class Quantum Gravity 35:215011, 2018), Viaggiu (Phys Scr 94:125014, 2019) concerning my proposal on the nature of the cosmological constant. In particular, I study both mathematically and physically the quantum Planckian context and I provide, in order to depict quantum fluctuations and in absence of a complete quantum gravity theory, a semiclassical solution where an effective inhomogeneous metric at Planckian scales or above is averaged. In such a framework, a generalization of the well known Buchert formalism (Buchert in Gen Relativ Gravit 33:1381, 2001) is obtained with the foliation in terms of the mean value \(s({\hat{t}})\) of the time operator \({\hat{t}}\) in a maximally localizing state \(\{s\}\) of a quantum spacetime (Doplicher et al. in Commun Math Phys 172:187, 1995; Doplicher in Space-time and fields: a quantum texture, in Karpacz, new developments in fundamental interaction theories, arXiv:hep-th/0105251, 2001; Bahns et al. in Advances in algebraic quantum field theory, Springer, Cham; Tomassini and Viaggiu in Class Quantum Gravity 28:075001, 2011) and in a cosmological context (Tomassini and Viaggiu in Class Quantum Gravity 31:185001, 2014). As a result, after introducing a decoherence length scale \(L_D\) where quantum fluctuations are averaged on, a classical de Sitter universe emerges with a small cosmological constant depending on \(L_D\) and frozen in a true vacuum state (lowest energy), provided that the kinematical backreaction is negligible at that scale \(L_D\). Finally, I analyse the case with a non-vanishing initial spatial curvature \({\mathcal {R}}\) showing that, for a reasonable large class of models, spatial curvature and kinematical backreation \({\mathcal {Q}}\) are suppressed by the dynamical evolution of the spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See also [14,15,16] for an application of my proposal to the black hole case and [17] in a more general context and [18] for an earlier proposal also in terms of massless excitations within the apparent horizon.

  2. See also the paper [26] and references therein.

  3. Also in [10] a Buchert scheme is proposed in order to study Planckian fluctuations.

  4. See also the interesting paper in [8], where a similar semiclassical approximation has been studied in terms of an inhomogeneous metric at Planckian scales.

  5. See Ref. [27] in a cosmological context.

  6. Note that in [28] these solutions have been studied in a dust filled universe with a vanishing cosmological constant in order to explain \({\overline{\Lambda }}\) in terms of \({\mathcal {Q}}\).

  7. This equation is dependent on the system (33)–(34)

References

  1. Colemann, S.: Why there is nothing rather than something: a theory of the cosmological constant. Nucl. Phys. 310(3), 643 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  2. Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75(2), 559 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  3. Steinhardt, P.J., Turok, N.: Why the cosmological constant is small and positive. Science 312, 1180 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  4. Caroll, S.M.: The cosmological constant. Liv. Rev. Rel. 4, 1 (2001)

    Article  MathSciNet  Google Scholar 

  5. Weimberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61(1), 1 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  6. Raifeartaigh, C.O’., Keeffe, M.O’., Nahm, W., Mitton, S.: One hundred years of the cosmological constant: from ’superfluous stunt’ to dark energy. Eur. Phys. J H 43, 73 (2018)

    Article  Google Scholar 

  7. Buchdahl, H.A.: Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. Soc. 150, 1 (1970)

    Article  ADS  Google Scholar 

  8. Wang, Q., Zhu, Z., Unruh, W.G.: How the huge energy of quantum vacuum gravitates to drive the slow accelerating expansion of the Universe. Phys. Rev. D 95, 103504 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  9. Alexander, S., Magueijo, J., Smolin L.: The quantum cosmological constant. arXiv:1807.01381

  10. Carlip, S.: Hiding the cosmological constant. Phys. Rev. Lett. 123, 131302 (2019)

    Article  ADS  Google Scholar 

  11. Wheeler, J.A.: On the nature of quantum geometrodynamics. Ann. Phys. 2(604), 610 (1957)

    ADS  MATH  Google Scholar 

  12. Viaggiu, S.: On a physical description and origin of the cosmological constant. Class. Quantum Gravity 35, 215011 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Viaggiu, S.: The physical origin of the cosmological constant: continuum limit and the analogy with the Casimir effect. Phys. Scr. 94, 125014 (2019)

    Article  Google Scholar 

  14. Viaggiu, S.: Statistical mechanics of gravitons in a box and the black hole entropy. Physica A 473, 412 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. Viaggiu, S.: Entropy, temperature and internal energy of trapped gravitons and corrections to the Black Hole entropy. Physica A 488, 72 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Viaggiu, S.: Building a linear equation of state for trapped gravitons from finite size effects and the Schwarzschild black hole case. Int. J. Mod. Phys. D 27, 1850061 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. Viaggiu, S.: Statistical description of massless excitations within a sphere with a linear equation of state and the dark energy case. Int. J. Mod. Phys. A 33, 1850074 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. Viaggiu, S.: A statistical representation of the cosmological constant from finite size effects at the apparent horizon. Gen. Relativ. Gravit. 48, 100 (2016)

    Article  ADS  Google Scholar 

  19. Misner, C.W., Sharp, D.H.: Relativistic equations for adiabatic, spherically symmetric gravitational collapse. Phys. Rev. 136, B571 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  20. Doplicher, S., Fredenhagen, K., Roberts, J.E.: The quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys. 172, 187 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  21. Doplicher, S.: Space-time and fields: a quantum texture, in Karpacz, new developments in fundamental interaction theories, 204-213, arXiv:hep-th/0105251 (2001)

  22. Bahns, D., Doplicher, S., Morsella, G., Piacitelli, G.: Advances in Algebraic Quantum Field Theory, pp. 289–330. Springer, Cham (2015)

    Book  Google Scholar 

  23. Tomassini, L., Viaggiu, S.: Physically motivated uncertainty relations at the Planck length for an emergent non commutative spacetime. Class. Quantum Gravity 28, 075001 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  24. Tomassini, L., Viaggiu, S.: Building non commutative spacetimes at the Planck length for Friedmann flat cosmologies. Class. Quantum Gravity 31, 185001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  25. Buchert, T.: On average properties of inhomogeneous fluids in general relativity II: perfect fluid cosmologies. Gen. Relativ. Gravit. 33, 1381 (2001)

    Article  ADS  Google Scholar 

  26. Wiltshire, D.L.: Exact solution to the averaging problem in cosmology. Phys. Rev. Lett. 99, 251101 (2007)

    Article  ADS  Google Scholar 

  27. Wiltshire, D.L.: Cosmic clocks, cosmic variance and cosmic averages. New J. Phys. 9, 377 (2007)

    Article  ADS  Google Scholar 

  28. Buchert, T., Larena, J., Alimi, J.M.: Correspondence between kinematical backreaction and scalar field cosmologies—the ‘morphon field’. Class. Quantum Gravity 23, 6379 (2006)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Viaggiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viaggiu, S. The Cosmological Constant From Planckian Fluctuations and the Averaging Procedure. Found Phys 49, 1287–1305 (2019). https://doi.org/10.1007/s10701-019-00308-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-019-00308-5

Keywords

Navigation