Skip to main content
Log in

Constructing Extremal Compatible Quantum Observables by Means of Two Mutually Unbiased Bases

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We describe a particular class of pairs of quantum observables which are extremal in the convex set of all pairs of compatible quantum observables. The pairs in this class are constructed as uniformly noisy versions of two mutually unbiased bases (MUB) with possibly different noise intensities affecting each basis. We show that not all pairs of MUB can be used in this construction, and we provide a criterion for determining those MUB that actually do yield extremal compatible observables. We apply our criterion to all pairs of Fourier conjugate MUB, and we prove that in this case extremality is achieved if and only if the quantum system Hilbert space is odd-dimensional. Remarkably, this fact is no longer true for general non-Fourier conjugate MUB, as we show in an example. Therefore, the presence or the absence of extremality is a concrete geometric manifestation of MUB inequivalence, that already materializes by comparing sets of no more than two bases at a time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Heinosaari, T., Miyadera, T., Ziman, M.: An invitation to quantum incompatibility. J. Phys. A 49, 123001 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Holevo, A.S.: Statistical definition of observable and the structure of statistical models. Rep. Math. Phys. 22, 385–407 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  3. Ali, S.T., Carmeli, C., Heinosaari, T., Toigo, A.: Commutative POVMs and fuzzy observables. Found. Phys. 39, 593–612 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Busch, P., Lahti, P., Pellonpää, J.-P., Ylinen, K.: Quantum Measurement. Springer, Switzerland (2016)

    Book  MATH  Google Scholar 

  5. Davies, E.B.: Quantum Theory of Open System. Academic Press, London (1976)

    MATH  Google Scholar 

  6. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  7. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland Publishing Co., Amsterdam (1982)

    MATH  Google Scholar 

  8. Heinosaari, T., Schultz, J., Toigo, A., Ziman, M.: Maximally incompatible quantum observables. Phys. Lett. A 378, 1695–1699 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Heinosaari, T., Kiukas, J., Reitzner, D.: Noise robustness of the incompatibility of quantum measurements. Phys. Rev. A 92, 022115 (2015)

    Article  ADS  Google Scholar 

  10. Busch, P., Heinosaari, T., Schultz, J., Stevens, N.: Comparing the degrees of incompatibility inherent in probabilistic physical theories. EPL 103, 10002 (2013)

    Article  ADS  Google Scholar 

  11. Banik, M., Gazi, M.R., Ghosh, S., Kar, G.: Degree of complementarity determines the nonlocality in quantum mechanics. Phys. Rev. A 87, 052125 (2013)

    Article  ADS  Google Scholar 

  12. Jenčová, A., Plávala, M.: Conditions on the existence of maximally incompatible two-outcome measurements in general probabilistic theory. Phys. Rev. A 96, 022113 (2017)

    Article  ADS  Google Scholar 

  13. Gudder, S.: Compatibility for probabilistic theories. Math. Slovaca 66, 449–458 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Vidal, G., Tarrach, R.: Robustness of entanglement. Phys. Rev. A 59, 141–155 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  15. Uola, R., Budroni, C., Gühne, O., Pellonpää, J.-P.: One-to-one mapping between steering and joint measurability problems. Phys. Rev. Lett. 115, 230402 (2015)

    Article  ADS  Google Scholar 

  16. Cavalcanti, D., Skrzypczyk, P.: Quantitative relations between measurement incompatibility, quantum steering, and nonlocality. Phys. Rev. A 93, 052112 (2016)

    Article  ADS  Google Scholar 

  17. Designolle, S., Skrzypczyk, P., Fröwis, F., Brunner, N.: Quantifying measurement incompatibility of mutually unbiased bases. Phys. Rev. Lett. 122, 050402 (2019)

    Article  ADS  Google Scholar 

  18. Haapasalo, E.: Robustness of incompatibility for quantum devices. J. Phys. A 48, 255303 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Haagerup, U.: Orthogonal maximal abelian \(*\)-subalgebras of the \(n\times n\) matrices and cyclic \(n\)-roots. In: Operator algebras and quantum field theory (Rome, 1996), pp. 296–322. International Press, Cambridge (1997)

  20. Carmeli, C., Heinosaari, T., Toigo, A.: Informationally complete joint measurements on finite quantum systems. Phys. Rev. A 85, 012109 (2012)

    Article  ADS  Google Scholar 

  21. Uola, R., Luoma, K., Moroder, T., Heinosaari, T.: Adaptive strategy for joint measurements. Phys. Rev. A 94, 022109 (2016)

    Article  ADS  Google Scholar 

  22. Carmeli, C., Heinosaari, T., Toigo, A.: Quantum incompatibility witnesses. Phys. Rev. Lett. 122, 130402 (2019)

    Article  ADS  Google Scholar 

  23. Guerini, L., Cunha, M.T.: Uniqueness of the joint measurement and the structure of the set of compatible quantum measurements. J. Math. Phys. 59, 042106 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Busch, P.: Unsharp reality and joint measurements for spin observables. Phys. Rev. D 33, 2253–2261 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  25. Tadej, W., Życzkowski, K.: A concise guide to complex Hadamard matrices. Open Syst. Inf. Dyn. 13, 133–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  27. Durt, T., Englert, B.-G., Bengtsson, I., Życzkowski, K.: On mutually unbiased bases. Int. J. Quantum Inf. 8, 535–640 (2010)

    Article  MATH  Google Scholar 

  28. Lang, S.: Algebra, Volume 211 of Graduate Texts in Mathematics, 3rd edn. Springer, New York (2002)

  29. Ivanović, I.D.: Geometrical description of quantal state determination. J. Phys. A 14, 3241–3245 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  30. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363–381 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  31. Bandyopadhyay, S., Boykin, P.O., Roychowdhury, V., Vatan, F.: A new proof for the existence of mutually unbiased bases. Algorithmica 34, 512–528 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Carmeli, C., Schultz, J., Toigo, A.: Covariant mutually unbiased bases. Rev. Math. Phys. 28, 1650009 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Leonardo Guerini and Marcelo Terra Cunha for having pointed out their paper [23] to our attention, and for useful discussions during the development of the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Carmeli.

Additional information

Dedicated to the memory of Paul Busch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carmeli, C., Cassinelli, G. & Toigo, A. Constructing Extremal Compatible Quantum Observables by Means of Two Mutually Unbiased Bases. Found Phys 49, 532–548 (2019). https://doi.org/10.1007/s10701-019-00274-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-019-00274-y

Keywords

Navigation