Skip to main content
Log in

Simultaneity on the Rotating Disk

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The disk that rotates in an inertial frame in special relativity has long been analysed by assuming a Lorentz contraction of its peripheral elements in that frame, which has produced widely varying views in the literature. We show that this assumption is unnecessary for a disk that corresponds to the simplest form of rotation in special relativity. After constructing such a disk and showing that observers at rest on it do not constitute a true rotating frame, we choose a “master” observer and calculate a set of disk coordinates and spacetime metric pertinent to that observer. We use this formalism to resolve the “circular twin paradox”, then calculate the speed of light sent around the periphery as measured by the master observer, to show that this speed is a function of sent-direction and disk angle traversed. This result is consistent with the Sagnac Effect, but constitutes a finer analysis of that effect, which is normally expressed using an average speed for a full trip of the periphery. We also use the formalism to give a resolution of “Selleri’s paradox”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. I use the words “observe” and “measure” to denote the ordering of events that an observer concludes to have happened based on information supplied by other observers in the same frame, who each record only the events that occur very close to them. In contrast, I use the word “see” to denote recording the paths of light rays. This paper describes what is observed, not what is seen.

References

  1. Grøn, Ø.: Space geometry in rotating reference frames: a historical appraisal. In: Relativity in Rotating Frames, pp. 285–333. Springer, Dordrecht (2004)

  2. Ehrenfest, P.: Gleichförmige Rotation starrer Körper und Relativitätstheorie. Phys. Z. 10, 918 (1909)

    MATH  Google Scholar 

  3. Einstein, A.: The Meaning of Relativity, pp. 58 and 59. Methuen and Co., London (1950)

  4. Becquerel, J.: Le Principe de Relativité et la Théorie de la Gravitation, p. VIII. Gauthier-Villars, Paris (1922)

    MATH  Google Scholar 

  5. Langevin, P.: Remarques au sujet de la Note de Prunier. Comptes Rendus 200, 48 (1935)

    MATH  Google Scholar 

  6. Franklin, P.: The meaning of rotation in the special theory of relativity. Proc. Natl Acad. Sci. USA 8, 265 (1922)

    Article  MATH  ADS  Google Scholar 

  7. Kurşunoğlu, B.: Spacetime on the rotating disk. Proc. Camb. Philos. Soc. 47, 177 (1951)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Grøn, Ø., Vøyenli, K.: On the foundation of the principle of relativity. Found. Phys. 29, 1695 (1999)

    Article  MathSciNet  Google Scholar 

  9. Schutz, B.: A First Course in General Relativity, p. 44. Cambridge University Press, Cambridge (1988)

  10. Cranor, M., Heider, E., Price, R.: A circular twin paradox. Am. J. Phys. 68, 11 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cantoni, V.: What is wrong with relativistic kinematics? Il Nuovo Cim. 57B, 220 (1968)

    Article  ADS  Google Scholar 

  12. Cook, R.: Physical time and physical space in general relativity. Am. J. Phys. 72, 214–219 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Misner, C., Thorne, K., Wheeler, J.: Gravitation, Section 6.6. W.H. Freeman, New York (1973)

    Google Scholar 

  14. Koks, D.: Explorations in Mathematical Physics, Chapter 7. Springer, New York (2006)

    MATH  Google Scholar 

  15. Desloge, E., Philpott, R.: Uniformly accelerated reference frames in special relativity. Am. J. Phys. 55, 252–261 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  16. Grøn, Ø.: Relativistic description of a rotating disk. Am. J. Phys. 43, 869–876 (1975)

    Article  ADS  Google Scholar 

  17. Rosen, N.: Notes on rotation and rigid bodies in relativity theory. Phys. Rev. 71, 54 (1947)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Brown, K.: A Rotating Disk in Translation. Cited 5th September 2016. This essay and its picture are cited in [1]. Brown himself maintains a negligible Internet footprint, so discussions of the details of his essays must presumably remain just discussions. http://www.mathpages.com/home/kmath197/kmath197.htm

  19. Carroll, S.: Spacetime and Geometry: An Introduction to General Relativity, p. 11. Addison Wesley, San Francisco (2004)

    MATH  Google Scholar 

  20. Brown, K.: Vis Inertiae. http://www.mathpages.com/rr/s5-01/5-01.htm. Cited 5th September 2016

  21. Selleri, F.: Noninvariant one-way speed of light and locally equivalent reference frames. Found. Phys. Lett. 10, 73–83 (1997)

    Article  MathSciNet  Google Scholar 

  22. Selleri, F.: Sagnac effect: end of the mystery. In: Relativity in Rotating Frames, p. 57. Kluwer, Dordrecht (2004)

Download references

Acknowledgements

I wish to thank Scott Foster, Belinda Pickett, Andy Rawlinson, Alice von Trojan, David Wiltshire, and an anonymous referee for discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don Koks.

Appendix: Derivation of the Spacetime Metric

Appendix: Derivation of the Spacetime Metric

In this appendix we derive (20). We require to calculate the elements \(g_{\alpha ^{\prime }\beta ^{\prime }}\) of the primed metric in (20), given the elements \(g_{\mu \nu }\) of the lab (unprimed) metric in (18). Write the metric tensor as \({\mathsf {g}},\) its matrix of elements with respect to primed coordinates as \([{\mathsf {g}}]_\text {p},\) its matrix of elements with respect to unprimed coordinates as \([{\mathsf {g}}]_\text {u},\) the jacobian matrix of partial derivatives of unprimed coordinates with respect to primed coordinates as \(\varLambda ^{\!\text {u}}_\text {p},\) and its inverse, the jacobian matrix of partial derivatives of primed coordinates with respect to unprimed, as \(\varLambda ^{\!\text {p}}_\text {u}.\) Then the change-of-variables identity for the metric,

$$\begin{aligned} g_{\alpha ^{\prime }\beta ^{\prime }} = \varLambda ^\mu _{\alpha ^{\prime }} \varLambda ^\nu _{\beta ^{\prime }} g_{\mu \nu }\,, \end{aligned}$$
(49)

can be written in matrix form as (with superscript “t” denoting transpose)

$$\begin{aligned}{}[{\mathsf {g}}]_\text {p} = \big (\varLambda ^{\!\text {u}}_\text {p}\big )^{\text {t}} [{\mathsf {g}}]_\text {u} \varLambda ^{\!\text {u}}_\text {p}. \end{aligned}$$
(50)

Rather than calculate \(\varLambda ^{\!\text {u}}_\text {p}\) directly, it is easier to calculate \(\varLambda ^{\!\text {p}}_\text {u}\) and invert it. So consider

$$\begin{aligned} \varLambda ^{\!\text {p}}_\text {u}\equiv \begin{bmatrix} \,\partial t^{\prime }/\partial t&\;\;\; \partial t^{\prime }/\partial r&\;\;\; \partial t^{\prime }/\partial \theta \,\\[1.5ex] \,\partial r^{\prime }/\partial t&\;\;\; \partial r^{\prime }/\partial r&\;\;\; \partial r^{\prime }/\partial \theta \,\\[1.5ex] \,\partial \theta ^{\prime }/\partial t&\;\;\; \partial \theta ^{\prime }/\partial r&\;\;\; \partial \theta ^{\prime }/\partial \theta \,\end{bmatrix}. \end{aligned}$$
(51)

Refer to (13) for all coordinate dependencies. We will calculate the first element of the matrix, as this is completely representative of the other elements. Write

$$\begin{aligned} {\partial t^{\prime }\over \partial t} = {1\over \gamma }{\partial t_0\over \partial t}\quad \text {at constant}\,r,\,\theta . \end{aligned}$$
(52)

Use the “\(S,\,C\,\)” shorthand of (19), and apply \(\partial /\partial t\) at constant r and \(\theta \) to (10), giving

$$\begin{aligned} {\partial t_0\over \partial t} = 1 + Vr C\varOmega {\partial t_0\over \partial t}, \end{aligned}$$
(53)

which solves for \(\partial t_0/\partial t,\) leading to

$$\begin{aligned} {\partial t^{\prime }\over \partial t} = {1\over \gamma (1-Vr C\varOmega )}. \end{aligned}$$
(54)

The other elements of (51) are calculated in the same way; for the bottom row, refer also to the expression for \(\theta ^{\prime }\) in (13). We finally obtain

$$\begin{aligned}&\varLambda ^{\!\text {p}}_\text {u}= \begin{bmatrix} \,1\over \gamma (1-Vr C\varOmega )&\;\;\; -VS\over \gamma (1-Vr C\varOmega )&\;\;\; -Vr C\over \gamma (1-Vr C\varOmega )\,\\[1.5ex] \,0&\;\;\; 1&\;\;\; 0\,\\[1.5ex] \,-\varOmega&\;\;\; 0&\;\;\; 1\,\end{bmatrix},\nonumber \\&\quad \text { which inverts to}\, \varLambda ^{\!\text {u}}_\text {p}= \begin{bmatrix} \,\gamma&\;\;\; VS\over 1-Vr C\varOmega&\;\;\; Vr C\over 1-Vr C\varOmega \,\\[1.5ex] \,0&\;\;\; 1&\;\;\; 0\,\\[1.5ex] \,\gamma \varOmega&\;\;\; VS\varOmega \over 1-Vr C\varOmega&\;\;\; 1\over 1-Vr C\varOmega \,\end{bmatrix}. \end{aligned}$$
(55)

We can now evaluate (50). Using the flat-spacetime metric \([{\mathsf {g}}]_\text {u} = {{\mathrm{diag}}}(1,\,-1,\,-r^2)\), the primed-coordinates metric is

$$\begin{aligned}{}[{\mathsf {g}}]_\text {p} = \begin{bmatrix} \,\gamma ^2(1-\varOmega ^2 r^2)&\;\;\; \gamma V S (1-\varOmega ^2 r^2)\over 1 -Vr C\varOmega&\;\;\; \gamma r(VC-\varOmega r)\over 1 -Vr C\varOmega \,\\[2ex] \,\gamma V S (1-\varOmega ^2 r^2)\over 1 -Vr C\varOmega&\;\;\; -1+{V^2S^2(1-\varOmega ^2 r^2)\over (1-Vr C\varOmega )^2}&\;\;\; VSr (VC-\varOmega r)\over (1-Vr C\varOmega )^2\,\\[2ex] \,\gamma r(VC-\varOmega r)\over 1 -VrC\varOmega&\;\;\; VSr(VC-\varOmega r)\over (1-VrC\varOmega )^2&\;\;\; {-r^2(1-V^2C^2)\over (1-VrC\varOmega )^2}\,\end{bmatrix}. \end{aligned}$$
(56)

Now invoke (13) to rewrite r as \(r^{\prime },\) after which this metric is easily written with infinitesimals as (20).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koks, D. Simultaneity on the Rotating Disk. Found Phys 47, 505–531 (2017). https://doi.org/10.1007/s10701-017-0075-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-017-0075-6

Keywords

Mathematics Subject Classification

Navigation