Skip to main content
Log in

Does Bohm’s Quantum Force Have a Classical Origin?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In the de Broglie–Bohm formulation of quantum mechanics, the electron is stationary in the ground state of hydrogenic atoms, because the quantum force exactly cancels the Coulomb attraction of the electron to the nucleus. In this paper it is shown that classical electrodynamics similarly predicts the Coulomb force can be effectively canceled by part of the magnetic force that occurs between two similar particles each consisting of a point charge moving with circulatory motion at the speed of light. Supposition of such motion is the basis of the Zitterbewegung interpretation of quantum mechanics. The magnetic force between two luminally-circulating charges for separation large compared to their circulatory motions contains a radial inverse square law part with magnitude equal to the Coulomb force, sinusoidally modulated by the phase difference between the circulatory motions. When the particles have equal mass and their circulatory motions are aligned but out of phase, part of the magnetic force is equal but opposite the Coulomb force. This raises a possibility that the quantum force of Bohmian mechanics may be attributable to the magnetic force of classical electrodynamics. It is further shown that relative motion between the particles leads to modulation of the magnetic force with spatial period equal to the de Broglie wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85(2), 166–179 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Hestenes, D.: The zitterbewegung interpretation of quantum mechanics. Found. Phys. 20(10), 1213–1232 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  3. Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610 (1928)

    Article  ADS  MATH  Google Scholar 

  4. Schrödinger, E.: Über die kräftefreie Bewegung in der relativistischen Quantenmechanik. Sitzungber. Preuss. Akad. Wiss. Phys.-Math. Kl.24, 418 (1930)

  5. Huang, K.: On the zitterbewegung of the Dirac electron. Am. J. Phys. 20, 479 (1952)

    Article  ADS  MATH  Google Scholar 

  6. Hestenes, D.: op. cit

  7. Rivas, M.: Kinematical Theory of Spinning Particles. Kluwer Academic, Dordrecht (2001)

    MATH  Google Scholar 

  8. Rivas, M.: An interaction Lagrangian for two spin 1/2 elementary Dirac particles. J. Phys. A 40, 2541–2552 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1998)

    MATH  Google Scholar 

  10. Hestenes, D.: Zitterbewegung in quantum mechanics. Found. Phys. 40(1), 1–54 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Rivas, op. cit., Section 6.1.1, 254–264

  12. Holland, P.: Quantum potential energy as concealed motion. Found. Phys. 45(2), 134–141 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Dennis, G., de Gosson, M., Hiley, B.: Bohm’s Quantum Potential as an Internal Energy, (preprint) arXiv:1412.5133 (2014)

  14. Salesi, G.: Spin and the Madelung fluid. Mod. Phys. Lett. A 11, 1815 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Salesi, G., Recami, E.: A velocity field and operator for spinning particles in (nonrelativistic) quantum mechanics. Found. Phys. 28, 763–773 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  16. Dolce, D.: Compact time and determinism for bosons. Found. Phys. 41(178), 178–203 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Dolce, D.: Gauge interaction as periodicity modulation. Ann. Phys. 327(6), 1562–1592 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Dolce, D., Perali, A.: The role of quantum recurrence in superconductivity, carbon nanotubes, and related gauge symmetry breaking. Found. Phys. 44(9), 905–922 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. De Luca, J.: Minimizers with discontinuous velocities for the electromagnetic variational method. Phys. Rev. E 82, 026212 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. Driver, R.D.: A “backwards” two-body problem of classical relativistic electrodynamics. Phys. Rev. 178(5), 2051–2057 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  21. Raju, C.K.: The electrodynamic 2-body problem and the origin of quantum mechanics. Found. Phys. 34(6), 937–962 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. De Luca, J.: Stiff three-frequency orbit of the hydrogen atom. Phys. Rev. E 73, 026221 (2006)

    Article  ADS  Google Scholar 

  23. Raju, C.K., Raju, S.: Radiative damping and functional differential equations. Mod. Phys. Lett. A 26(35), 2627–2638 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Price, H.: Time’s Arrow and Archimedes Point: New Directions for the Physics of Time. Oxford University Press, Oxford (1996)

    Google Scholar 

  25. Price, H., Wharton, K.: A Live Alternative to Quantum Spooks, (preprint) arXiv:1510.06712 (2015)

  26. Price, H., Wharton, K.: Disentangling the Quantum World, (preprint) arXiv:1508.01140 (2015)

  27. Dirac, P.A.M.: Classical theory of radiating electrons. Proc. R. Soc. A 167, 148 (1938)

    Article  ADS  MATH  Google Scholar 

  28. Wheeler, J.A., Feynman, R.P.: Interaction with the absorber as the mechanism of radiation. Rev. Mod. Phys. 17, 157–181 (1945)

    Article  ADS  Google Scholar 

  29. Schild, A.: Electromagnetic two-body problem. Phys. Rev. 131, 2762 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. De Luca, J.: Variational principle for the Wheeler-Feynman electrodynamics. J. Math. Phys. 50, 062701 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. De Luca, J.: Double-slit and electromagnetic models to complete quantum mechanics. J. Comput. Theor. Nanosci. 8(6), 1040–1051 (2010)

    Article  Google Scholar 

  32. De Luca, J.: Variational electrodynamics of atoms. Prog. Electromagn. Res. B 53, 147–186 (2013)

    Article  Google Scholar 

  33. Hiley, B.J.: Is the electron stationary in the ground state of the Dirac hydrogen atom in Bohms Theory?, (preprint) arXiv:1412.5887v1 (2014)

  34. Hiley, B.J., Callaghan, R.E.: Clifford algebras and the Dirac-Bohm quantum Hamilton-Jacobi equation. Found. Phys. 42, 192–208 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Bohm, D.: op. cit

  36. Griffiths, J.D.: Introduction to Elementary Particles, p. 162. Wiley-VCH, Weinheim (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Lush.

Appendix: Evaluation of the Quantum Force in the Hydrogen Atom Ground State

Appendix: Evaluation of the Quantum Force in the Hydrogen Atom Ground State

The quantum potential and resulting quantum force is calculated from the Schrödinger wavefunction. In the application of the Schrödinger equation to the hydrogen-like atom, the classical potential term is simply the Coulomb potential of a point charge, while the quantum potential depends on the solution. For the ground state solution of the time-independent Schrödinger equation, and for all s-states, the electron momentum vanishes [33]. In these cases, the quantum potential is everywhere opposite the Coulomb potential, and so the quantum force exactly cancels the Coulomb force. However, the quantum force is not usually evaluated explicitly in the literature, since it is not needed to obtain the physical results of interest (e.g., that the electron momentum vanishes), so for completeness it is evaluated in the following for the hydrogen atom ground state. Also, it serves to illustrate that although the magnetic force component described here bears a similarity to the quantum force, it cannot be equated to it directly. More generally, the quantum force cannot in principle be equatable to the magnetic force, because while the quantum potential is scalar in both its non-relativistic and relativistic [34] forms, the magnetic force must be derived from a vector potential.

The quantum potential is [35]

$$\begin{aligned} Q = -\frac{\hbar ^2}{4m}\left[ \frac{\nabla ^2\rho }{\rho } - \frac{1}{2}\frac{(\nabla \rho )^2}{\rho ^2} \right] , \end{aligned}$$
(30)

where, if the Schrödinger wavefunction \(\psi \equiv R \exp (iS/\hbar )\), then \( \rho \equiv R^2\).

For the hydrogen ground state, the normalized Schrödinger wavefunction is [36]

$$\begin{aligned} \psi = \left( \frac{2}{{a_0}^{3/2}} \right) e^{-r/a_0}, \end{aligned}$$
(31)

or, equivalently,

$$\begin{aligned} \rho = \left( \frac{4}{{a_0}^{3}} \right) e^{-2r/a_0}, \end{aligned}$$
(32)

and the quantum potential evaluates as

$$\begin{aligned} Q = \frac{\hbar ^2}{2m a_0} \left[ \frac{2}{r} - \frac{1}{{a_0}} \right] , \end{aligned}$$
(33)

and the quantum force is

$$\begin{aligned} F_Q = -\nabla Q = \frac{\hbar ^2}{m a_0} \left[ \frac{\hat{\varvec{r}}}{r^2} \right] . \end{aligned}$$
(34)

With \(a_0 = \hbar ^2/m e^2\),

$$\begin{aligned} F_Q = e^2 \left[ \frac{\hat{\varvec{r}}}{r^2} \right] . \end{aligned}$$
(35)

The quantum force thus exactly cancels the Coulomb attraction, in the Schrödinger hydrogen atom ground state.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lush, D.C. Does Bohm’s Quantum Force Have a Classical Origin?. Found Phys 46, 1006–1021 (2016). https://doi.org/10.1007/s10701-016-9990-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-016-9990-1

Keywords

Navigation