Skip to main content
Log in

Hydrodynamics of the Physical Vacuum: I. Scalar Quantum Sector

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Physical vacuum is a special superfluid medium. Its motion is described by the Navier–Stokes equation having two slightly modified terms that relate to internal forces. They are the pressure gradient and the dissipation force because of viscosity. The modifications are as follows: (a) the pressure gradient contains an added term describing the pressure multiplied by the entropy gradient; (b) time-averaged viscosity is zero, but its variance is not zero. Owing to these modifications, the Navier–Stokes equation can be reduced to the Schrödinger equation describing behavior of a particle into the vacuum, which looks like a superfluid medium populated by enormous amount of virtual particle–antiparticle pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Here we have absolutely different insights.

  2. It is interesting to note that manifestation of the viscosity of the physical vacuum on the cosmic scale can give explanation of phenomena of the “Pioneer anomaly” [3] and the tired light through the quantum Hubble’s law [2].

References

  1. Abid, M., Huepe, C., Metens, S., Nore, C., Pham, C.T., Tuckerman, L.S., Brachet, M.E.: Stability and decay rates of non-isotropic attractive Bose-Einstein condensates. Fluid Dyn. Res. 33(5–6), 509–544 (2003). doi:10.1016/j.fluiddyn.2003.09.001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Alemanov, S.B.: Quantum Hubble’s law (quantum law of the cosmological redshift). Eng. Phys. 3, 40–46 (2014)

    Google Scholar 

  3. Alemanov, S.B.: Friction of spacecraft about vacuum fluctuations (the report at Moscow State University, in Russian) (2015). http://alemanow.narod.ru/pioneer.htm

  4. Benseny, A., Albareda, G., Sanz, A.S., Mompart, J., Oriols, X.: Applied Bohmian mechanics. Eur. Phys. J. D 68, 286–328 (2014). doi:10.1140/epjd/e2014-50222-4

    Article  ADS  Google Scholar 

  5. Berry, M.V., Chambers, R.G., Large, M.D., Upstill, C., Walmsley, J.C.: Wavefront dislocations in the Aharonov-Bohm effect and its water wave analogue. Eur. J. Phys. 1(3), 154–162 (1980). doi:10.1088/0143-0807/1/3/008

    Article  MathSciNet  Google Scholar 

  6. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85(2), 166–179 (1952). doi:10.1103/PhysRev.85.166

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden”. II. Phys. Rev. 85(2), 180–193 (1952). doi:10.1103/PhysRev.85.180

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bohm, D., Vigier, J.P.: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev. 96, 208–216 (1954). doi:10.1103/PhysRev.96.208

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bush, J.W.M.: Pilot-wave hydrodynamics. Annu. Rev. Fluid Mech. 47, 26992 (2015). doi:10.1146/annurev-fluid-010814-014506

    Article  Google Scholar 

  10. Buzea, C.G., Agop, M., Nejneru, C.: Correspondences of scale relativity theory with quantum mechanics. In: Pahlavani, M.R. (ed.) Theoretical Concept of Quantum Mechanics. Chap. 18, pp. 409–444. InTech, Rijeka (2012). doi:10.5772/34259

    Google Scholar 

  11. Couder, Y., Fort, E.: Single-particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97, 154101 (2006). doi:10.1103/PhysRevLett.97.154101

    Article  ADS  Google Scholar 

  12. Damázio, P.D., Siqueira, R.A.: Strong solutions of Navier-Stokes equations of quantum incompressible fluids (2013). http://people.ufpr.br/pddamazio/quantum-fluids-Damazio-Siqueira

  13. de Broglie, L.: Interpretation of quantum mechanics by the double solution theory. Annales de la Fondation Louis de Broglie 12(4), 1–22 (1987)

    Google Scholar 

  14. Derbes, D.: Feynman’s derivation of the Schrödinger equation. Am. J. Phys. 64(7), 881–884 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Donnelly, R.J.: Quantized Vortices in Helium II. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  16. Eddi, A., Sultan, E., Moukhtar, J., Fort, E., Rossi, M., Couder, Y.: Information stored in Faraday waves: the origin of a path memory. J. Fluid Mech. 674, 433–463 (2011). doi:10.1017/S0022112011000176

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Feynman, R.P., Hibbs, A.: Quantum Mechanics and Path Integrals. McGraw Hill, New York (1965)

    MATH  Google Scholar 

  18. Fiscaletti, D., Licata, I.: Bell length in the entanglement geometry. Int. J. Theor. Phys. 53(12), 1–22 (2014). doi:10.1007/s10773-014-2461-6

    MathSciNet  MATH  Google Scholar 

  19. Fritsche, L., Haugk, M.: Stochastic foundation of quantum mechanics and the origin of particle spin (2009). arXiv:0912.3442

  20. Grössing, G.: Sub-quantum thermodynamics as a basis of emergent quantum mechanics. Entropy 12, 1975–2044 (2010). doi:10.3390/e12091975

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Hartle, J.B.: What connects different interpretations of quantum mechanics? In: Elitzur, A., Dolev, S., Kolenda, N. (eds.) Quo Vadis Quantum Mechanics?, pp. 72–82. Springer, Berlin (2005)

    Google Scholar 

  22. Harvey, R.J.: Navier-Stokes analog of quantum mechanics. Phys. Rev. 152, 1115 (1966). doi:10.1103/PhysRev.152.1115

    Article  ADS  Google Scholar 

  23. Holland, P.: Hydrodynamic construction of the electromagnetic field. Proc. R. Soc. A 461, 3659–3679 (2005). doi:10.1098/rspa.2005.1525

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Jackiw, R., Nair, V.P., Pi, S.Y., Polychronakos, A.P.: Perfect fluid theory and its extensions. J. Phys. A 37, R327–R432 (2004). doi:10.1088/0305-4470/37/42/R01. arXiv:hep-ph/0407101

  25. Juffmann, T., Truppe, S., Geyer, P., Major, A.G., Deachapunya, S., Ulbricht, H., Arndt, M.: Wave and particle in molecular interference lithography. Phys. Rev. Lett. 103, 263601 (2009). doi:10.1103/PhysRevLett.103.263601

    Article  ADS  Google Scholar 

  26. Jüngel, A., Mili\(\hat{\rm {s}}\)ić, J.P: Quantum Navier-Stokes Equations. Progress in Industrial. Mathematics at ECMI 2010. Mathematics in Industry, vol. 17, pp. 427–439. Springer, Berlin (2012)

  27. Kundu, P., Cohen, I.: Fluid Mechanics. Academic Press, San Diego (2002)

    Google Scholar 

  28. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, Oxford (1987)

    MATH  Google Scholar 

  29. Licata, I., Fiscaletti, D.: Bell length as mutual information in quantum interference. Axioms 3(2), 153–165 (2014). doi:10.3390/axioms3020153

    Article  MATH  Google Scholar 

  30. Licata, I., Fiscaletti, D.: Quantum Potential: Physics, Geometry, and Algebra. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  31. Madelung, E.: Quantumtheorie in hydrodynamische form. Zts. f. Phys. 40, 322–326 (1926)

    Article  ADS  MATH  Google Scholar 

  32. Makri, N.: Feynman path integration in quantum dynamics. Comput. Phys. Commun. 63, 389–414 (1991)

    Article  ADS  MATH  Google Scholar 

  33. Martins, A.A.: Fluidic electrodynamics: on parallels between electromagnetic and fluidic inertia(2012). arXiv:1202.4611

  34. Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966). doi:10.1103/PhysRev.150.1079

    Article  ADS  Google Scholar 

  35. Nelson, E.: Dynamical Theories of Brownian Motion. Princeton University Press, Princeton (1967)

    MATH  Google Scholar 

  36. Nelson, E.: Quantum Fluctuations. Princeton Series in Physics. Princeton University Press, Princeton (1985)

    Google Scholar 

  37. Protiére, S., Boudaoud, A., Couder, Y.: Particle-wave association on a fluid interface. J. Fluid Mech. 554, 85–108 (2006). doi:10.1017/S0022112006009190

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Roberts, R.H., Berloff, N.G.: The nonlinear Schrödinger equation as a model of superfluidity. In: Barenghi, C.F., Donnelly, R.J., Vinen, V.F. (eds.) Quantized Vortex Dynamics and Superfluid Turbulence. Lecture Notes in Physics, vol. 571, pp. 235–257. Springer, Berlin (2001)

    Chapter  Google Scholar 

  39. Sbitnev, V.I.: Bohmian trajectories and the path integral paradigm: complexified Lagrangian mechanics. Int. J. Bifurc. Chaos 19(7), 2335–2346 (2009). doi:10.1142/S0218127409024104

    Article  MathSciNet  MATH  Google Scholar 

  40. Sbitnev, V.I.: Bohmian trajectories and the path integral paradigm—complexified Lagrangian mechanics. In: Pahlavani, M.R. (ed.) Theoretical Concepts of Quantum Mechanics, Chap. 15, pp. 313–334. InTech, Rijeka (2012). doi:10.5772/33064

    Google Scholar 

  41. Sbitnev, V.I.: Generalized path integral techique: nanoparticles incident on a slit grating, matter wave interference. In: Bracken, P. (ed.) Advances in Quantum Mechanics, Chap. 9, pp. 183–211. InTech, Rijeka (2013). doi:10.5772/53471

    Google Scholar 

  42. Sbitnev, V.I.: From the Newton’s laws to motions of the fluid and superfluid vacuum: vortex tubes, rings, and others (2014). arXiv:1403.3900

  43. Sbitnev, V.I.: Physical vacuum is a special superfluid medium. In: Pahlavani, M.R. (ed.) Selected Topics in Applications of Quantum Mechanics, Chap. 12, pp. 245–373. InTech, Rijeka (2015). doi:10.5772/59040

    Google Scholar 

  44. Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28(6), 1049–1070 (1926)

    Article  ADS  MATH  Google Scholar 

  45. Volovik, G.E.: The Universe in a Helium Droplet. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  46. Wyatt, R.E.: Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics. Springer, New York (2005)

    MATH  Google Scholar 

Download references

Acknowledgments

The author thanks Denise Puglia, Mike Cavedon, and Pat Noland for useful and valuable remarks and offers. The author thanks also Miss Pipa (Quantum Portal administrator) for preparing a program drawing Fig. 1. The author thanks the reviewers for the constructive critique and proposals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriy I. Sbitnev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sbitnev, V.I. Hydrodynamics of the Physical Vacuum: I. Scalar Quantum Sector. Found Phys 46, 606–619 (2016). https://doi.org/10.1007/s10701-015-9980-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9980-8

Keywords

Navigation