Skip to main content
Log in

The Wave Function as Matter Density: Ontological Assumptions and Experimental Consequences

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The wavefunction is the central mathematical entity of quantum mechanics, but it still lacks a universally accepted interpretation. Much effort is spent on attempts to probe its fundamental nature. Here I investigate the consequences of a matter ontology applied to spherical masses of constant bulk density. The governing equation for the center-of-mass wavefunction is derived and solved numerically. The ground state wavefunctions and resulting matter densities are investigated. A lowering of the density from its bulk value is found for low masses due to increased spatial spreading. A discussion of the possibility to experimentally observe these effects is given and the possible consequences for choosing an ontological interpretation for quantum mechanics are commented upon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. A different treatment of the integral kernel was recently proposed in [54] where the expressions 20 were rederived.

References

  1. Born, M.: Zur Quantenmechanik der Stossvorgange. Z. Phys. 37, 863 (1926)

    Article  ADS  MATH  Google Scholar 

  2. Born, M.: Zur Quantenmechanik der Stossvorgange. Z. Phys. 38, 803 (1926)

    Article  ADS  Google Scholar 

  3. Bacciagaluppi, G., Valentini, A.: Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press, Cambridge, UK (2009)

    Book  Google Scholar 

  4. Bohr, N.: The quantum postulate and the recent development of atomic theory. Nature 121, 580 (1928)

    Article  ADS  MATH  Google Scholar 

  5. Schrödinger, E.: Quantisierung als Eigenwertproblem (Erste Mitteilung). A. Phys. 79, 361 (1926)

    MATH  Google Scholar 

  6. Schrödinger, E.: Quantisierung als Eigenwertproblem (Zweite Mitteilung). A. Phys. 79, 489 (1926)

    MATH  Google Scholar 

  7. Schrödinger, E.: Quantisierung als Eigenwertproblem (Dritte Mitteilung: Störungstheorie, mit Anwendung auf den Starkeffekt der Balmerlinien) III. A. Phys. 80, 437 (1926)

  8. Schrödinger, E.: Quantisierung als Eigenwertproblem (Vierte Mitteilung) IV. A. Phys. 81, 109 (1926)

  9. Przibram, K. (ed.): Letters on Wave Mechanics. Philosophical Library, New York (1967)

    Google Scholar 

  10. Moore, W.M.: Schrödinger: Life and Thought. Cambridge University Press, Cambridge, UK (1992)

    MATH  Google Scholar 

  11. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-relativistic Theory. Pergamon Press, Oxford, UK (1976)

    Google Scholar 

  12. Sakurai, J.J.: Modern Quantum Mechanics. Addison-Wesley, New York (2010)

    Google Scholar 

  13. Bransden, B.H., Joachain, C.J.: Quantum Mechanics. Addison Wesley, New York (2000)

    Google Scholar 

  14. Einstein, A.: On the method of theoretical physics. Philos. Sci. 1, 163 (1934)

    Article  Google Scholar 

  15. Born, M.: Natural Philosophy of Cause and Chance. Dover Publications, New York (1964)

    Google Scholar 

  16. Peres, A.: Quantum Theory: Concepts and Metods. Kluwer, Dordrecht, the Netherlands (1995)

    Google Scholar 

  17. Bell, J.S.: Against ’measurement’. Phys. World 8, 33 (1990)

    Google Scholar 

  18. Bassi, A., Lochan, K., Satin, S., Singh, T.P., Ulbricht, H.: Models of wave-function collapse, underlying theories, and experimental results. Rev. Mod. Phys. 85, 471–526 (2013)

    Article  ADS  Google Scholar 

  19. Kiefer, C.: Quantum Gravity. Oxford University Press, Oxford (2007)

    Book  MATH  Google Scholar 

  20. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  21. Einstein, A.: Spielen Gravitationsfelder im Aufber der materiellen Elementarteilchen eine wesentliche Rolle? Sitzungsberichte der Preussischen Akademie der Wissenschaften, pp. 349–356 (1919)

  22. Einstein, A., Rosen, N.: The particle problem in the general theory of relativity. Phys. Rev. 48, 73 (1935)

    Article  ADS  Google Scholar 

  23. Wheeler, J.A.: Geons. Phys. Rev. 97, 511 (1955)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Kaup, D.J.: Klein–Gordon geon. Phys. Rev. 172, 1331 (1968)

    Article  ADS  Google Scholar 

  25. Ruffini, R., Bonazzola, S.: Systems of self-gravitating particles in general relativity and the concept of an equation of state. Phys. Rev. 187, 1767 (1969)

    Article  ADS  Google Scholar 

  26. Liddle, A.R., Madsen, M.S.: The structure and formation of boson stars. Int. J. Mod. Phys. D 1, 101 (1992)

    Article  ADS  MATH  Google Scholar 

  27. Mielke, E.W., Schunck, F.E.: Boson Stars: Early History and Recent Prospects. In: Piran, T., Ruffni, R. (eds.) The Eighth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the meeting held at the Hebrew University of Jerusalem, 22–27 June 1997, pp. 1607–1626. World Scientic, Singapore (1999)

  28. Mielke, E.W., Schunck, F.E.: Boson and Axion Stars. In: Gurzadyan, V.G., Jantzen, R.T., Ruffni, R. (eds.) The Ninth Marcel Grossmann Meeting: On recent developments in theoretical and experimental general relativity, gravitation, and relativistic eld theories, Proceedings of the MGIX MM meeting held at the University of Rome La Sapienza, 2(8), July 2000, pp. 581–591. World Scientic, Singapore (2002)

  29. Schunck, F.E., Mielke, E.W.: General relativistic boson stars. Class. Quant. Grav. 20, R301 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Mielke, E.W., Schunk, F.E.: Boson stars: early history and recent prospects. Proceedings of The Eighth Marcel Grossman Meeting on General Relativity, World Scientific, Singapore (1999)

  31. Møller, C.: The energy-momentum complex in general relativity and related problems. In: Lichnerowicz, A., Tonnelat, M.-A. (eds.) Les Theories Relativites de la Gravitation-Colloques Internationaux. CNRS, Paris (1962)

    Google Scholar 

  32. Rosenfeld, L.: On quantization of fields. Nucl. Phys. 40, 353–356 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  33. DeWitt, B.S.: The quantization of geometry. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research. Wiley, New York (1962)

    Google Scholar 

  34. Eppley, K., Hannah, E.: The necessity of quantizing the gravitational field. Found. Phys. 7, 51 (1977)

    Article  ADS  Google Scholar 

  35. Page, D.N., Geilker, C.D.: Indirect evidence for quantum gravity. Phys. Rev. Lett. 47, 979 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  36. Mattingly, J.: Why Eppley and Hannah’s thought experiment fails. Phys. Rev. D 73, 064025 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  37. Albers, M., Kiefer, C., Reginatto, M.: Measurement analysis and quantum gravity. Phys. Rev. D 78, 064051 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  38. Karolyhazy, F.: Gravitation and quantum mechanics of macroscopic objects. Il Nuovo Cimento 17, 390 (1966)

    Article  Google Scholar 

  39. Diosi, L.: Gravitation and quantum-mechanical localization of macro-objects. Phys. Lett. A 105, 199 (1984)

    Article  ADS  Google Scholar 

  40. Bialynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys. 100, 62 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  41. Penrose, R.: Gravity and state vector reduction. In: Penrose, R., Isham, C.J. (eds.) Quantum Concepts in Space and Time. Clarendon Press, Oxford (1986)

    Google Scholar 

  42. Penrose, R.: On Gravity’s role in quantum state reduction. Gen. Relat. Gravit. 28, 581 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Penrose, R.: The Emperor’s New mind. Oxford University Press, Oxford (1989)

    Google Scholar 

  44. Penrose, R.: Shadows of the Mind. Oxford University Press, Oxford (1994)

    Google Scholar 

  45. Albert, D.Z., Ney, A.: The Wave Function: Essays on the Metaphysics of Quantum Mechanics. Oxford University Press, Oxford, UK (2013)

    Google Scholar 

  46. Ghirardi, G.C., Grassi, R., Benatti, F.: Describing the macroscopic world: closing the circle within the dynamical reduction program. Found. Phys. 25, 5 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Eckart, C.: The kinetic energy of polyatomic molecules. Phys. Rev. 46, 383–387 (1935)

    Article  ADS  Google Scholar 

  48. Barut, A.O., Kraus, J.: Nonperturbative quantum electrodynamics: the lamb shift. Found. Phys. 13, 189 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  49. Dalibard, J., Dupont-Roc, J., Cohen-Tannoudji, C.: Vacuum fluctuations and radiation reaction: identification of their respective contributions. J. Phys. 43, 1617 (1982)

    Article  Google Scholar 

  50. Gao, S.: The wavefunction and quantum reality. AIP Conf. Proc. 1327, 334 (2011)

    Article  ADS  Google Scholar 

  51. Giulini, D., Grossardt, A.: The Schrödinger–Newton equation as non-relativistic limit of self-gravitating Klein–Gordon and Dirac elds. Class. Quant. Grav. 29, 215010 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  52. Giulini, D., Grossardt, A.: Gravitationally induced inhibitions of dispersion according to a modified Schrödinger–Newton equation for a homogeneous-sphere potential. Class. Quant. Grav. 30, 155018 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  53. Carstou, F., Lombard, R.J.: A new method of evaluating folding type integrals. Ann. Phys. 217, 279 (1992)

    Article  ADS  Google Scholar 

  54. Colin, S., Durt, T., Willox, R.: Can quantum systems succumb to their own (gravitational) attraction? arXiv:1403.2982v1 (2014)

  55. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  56. Weideman, J.A.C., Reddy, S.C.: A Matlab differentiation matrix suite. ACM Trans. Math. Softw. 26, 465 (2000)

    Article  MathSciNet  Google Scholar 

  57. Kythe, P.K., Schäferkotter, M.R.: Handbook of Computational Methods for Integration. Chapman and Hall/CRC, Boca Raton (2004)

    Book  Google Scholar 

  58. Chang, D.E., et al.: Cavity optomechanics using an optically levitated nanosphere. Proc. Natl. Acad. Sci. 107, 1005 (2010)

    Article  ADS  Google Scholar 

  59. Romero-Isart, O., Juan, M.L., Quidant, R., Cirac, J.I.: Towards quantum superposition of living organisms. New J. Phys. 12, 033015 (2010)

    Article  ADS  Google Scholar 

  60. Jääskeläinen, M.: Gravitational self-localization for spherical masses. Phys. Rev. A 86, 052105 (2012)

    Article  Google Scholar 

  61. Moroz, I., Penrose, R., Tod, P.: Spherically-symmetric solutions of the Schrödinger–Newton equations. Class. Quant. Grav. 15, 2733 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  62. Bernstein, D.H., Giladi, E., Jones, K.R.W.: Eigenstates of the gravitational. Schrödinger equation. Mod. Phys. Lett. A 13, 2327 (1998)

    Article  ADS  Google Scholar 

  63. Colella, R., Overhauser, A.W., Werner, S.A.: Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472 (1975)

    Article  ADS  Google Scholar 

  64. Aminoff, C.G., et al.: Cesium atoms bouncing in a stable gravitational cavity. Phys. Rev. Lett. 71, 3083 (1993)

    Article  ADS  Google Scholar 

  65. Nezvizhevsky, V.V., et al.: Quantum states of neutrons in the Earth’s gravitational field. Nature 415, 297 (2002)

    Article  ADS  Google Scholar 

  66. Muller, H., Peters, A., Chu, S.: A precision measurement of the gravitational redshift by the interference of matter waves. Nature 463, 926 (2010)

    Article  ADS  Google Scholar 

  67. Pusey, M.F., Barrett, J., Rudolph, T.: On the reality of the quantum state. Nature Phys. 8, 475 (2012)

    Article  ADS  Google Scholar 

  68. Colbeck, R., Renner, R.: Is a systems wavefunction in one-to-one correspondence with its elements of reality? Phys. Rev. Lett. 108, 150402 (2012)

    Article  ADS  Google Scholar 

  69. Adler, S.L.: Comments on proposed gravitational modifications of Schrödinger dynamics and their experimental implications. J. Phys. A 40, 755 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  70. Tornay, S.C.: Ockham: Studies and Selections. Open Court Publishers, La Salle (1938)

    Google Scholar 

  71. Metcalf, H.J., van der Straten, P.: Laser Cooling and Trapping. Springer, New York (1999)

    Book  Google Scholar 

  72. Pethick, C.J., Smith, H.: Bose–Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  73. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  74. Meystre, P.: Atom Optics. Springer, New York (2001)

    Book  Google Scholar 

  75. Neuman, K., Block, S.: Optical trapping. Rev. Sci. Instrum. 75, 2787 (2004)

    Article  ADS  Google Scholar 

  76. Dholakia, K., Reece, P., Gu, M.: Optical micromanipulation. Chem. Soc. Rev. 37, 42–55 (2008)

    Article  Google Scholar 

  77. Bowman, R.W., Padgett, M.J.: Optical trapping and binding. Rep. Prog. Phys. 76, 026401 (2013)

    Article  ADS  Google Scholar 

  78. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity Optomechanics, arXiv:1303.0733 (2013)

  79. Chen, Y.: Macroscopic quantum mechanics: theory and experimental concepts of optomechanics. J. Phys. B 46, 104001 (2013)

    Article  ADS  Google Scholar 

  80. Pikovski, I., Vanner, M.R., Aspelmeyer, M., Kim, M.S., Brukner, C.: Probing Planck-scale physics with quantum optics. Nature Phys. 8, 393 (2012)

    Article  ADS  Google Scholar 

  81. Romero-Isart, O.: Quantum superposition of massive objects and collapse models. Phys. Rev. A 84, 052121 (2012)

    Article  ADS  Google Scholar 

  82. Li, T., Kheifets, S., Reizen, M.G.: Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Phys. 7, 527 (2011)

    Article  ADS  Google Scholar 

  83. Leanhardt, A.E., et al.: Cooling Bose–Einstein condensates below 500 picokelvin. Science 301, 1513 (2003)

    Article  ADS  Google Scholar 

  84. Arndt, M., Hornberger, K.: Quantum interferometry with complex molecules. In: Deveaud-Pledran, B., Quattropani, A., Schwendimann, P. (eds.) Quantum Coherence in Solid State Systems, International School of Physics “Enrico Fermi”, Course CLXXI, vol. 171. IOS Press, Amsterdam (2009)

  85. Marshall, W., Simon, C., Penrose, R., Bouwmeester, D.: Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  86. Asenbaum, P., Kuhn, S., Nimmrichter, S., Sezer, U., Arndt, M.: Cavity cooling of free silicon nano particles in high vacuum. Nat. Commun. 4, 2743 (2013)

    Article  ADS  Google Scholar 

  87. Yang, H., Miao, H., Lee, D.-S., Helou, B., Chen, Y.: Macroscopic quantum mechanics in a classical spacetime. Phys. Rev. Lett. 110, 170401 (2013)

    Article  ADS  Google Scholar 

  88. Simon, C., Buzek, V., Gisin, N.: No-signalling condition and quantum dynamics. Phys. Rev. Lett. 87, 170405 (2001)

    Article  ADS  Google Scholar 

  89. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Photons and Atoms: Introduction to Quantum Electrodynamics. Wiley, Hoboken (1997)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markku Jääskeläinen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jääskeläinen, M. The Wave Function as Matter Density: Ontological Assumptions and Experimental Consequences. Found Phys 45, 591–610 (2015). https://doi.org/10.1007/s10701-015-9884-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9884-7

Keywords

Navigation