Foundations of Physics

, Volume 44, Issue 9, pp 973–989 | Cite as

Majorana-Oppenheimer Approach to Proca Field Equations

  • J. L. Tomazelli
  • G. A. M. A. Fernandes


A Dirac-like equation for a massive field obeying the classical Proca equations of motion (PMO) is proposed in close analogy with Majorana’s construct for Maxwell electrodynamics. Its underlying algebraic structure is examined and a plausible physical interpretation is discussed. The behavior of the PMO equations in the presence of an external electromagnetic field is also investigated in the low energy limit, via unitary transformations similar to the Foldy-Wouthuysen canonical transformation for a Dirac fermion.


Classical field theory Proca equations Foldy-Wouthuysen (unitary) transformations 



G.A.M.A. Fernandes thanks Capes for the financial support.


  1. 1.
    Oppenheimer, J.R.: Note on light quanta and the electromagnetic field. Phys. Rev. 38, 725 (1931)ADSCrossRefGoogle Scholar
  2. 2.
    Mignani, R., Recami, E., Baldo, M.: About a Dirac-like equation for the photon according to ettore Majorana. Nuovo Cim. 11, 568 (1974)Google Scholar
  3. 3.
    Giannetto, E.: A Majorana-oppenheimer formulation of quantum electrodynamics. Nuovo Cim. 44, 140 (1985)MathSciNetGoogle Scholar
  4. 4.
    Esposito, S. Searching for an equation: Dirac, Majorana and the Others. arXiv:physics.hist-ph/1110.6878v1.
  5. 5.
    Esposito, S.: Covariant Majorana formulation of electrodynamics. Found. Phys. 28(2), 231 (1998)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Varlamov, V.V.: A note on the Majorana-Oppenheimer Quantum Electrodynamics, arXiv:math-ph/0206008.
  7. 7.
    Fernandes, G.A.M.A.: Representações Spinoriais do Grupo de Lorentz e Equações de Onda Relativísticas. Master’s thesis at Universidade Federal de Santa Catarina, Brazil (2012)Google Scholar
  8. 8.
    Foldy, L.L., Wouthuysen, S.A.: On the dirac theory of spin 1/2 particles and its non-relativistic limit. Phys. Rev. 78, 29 (1950)ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Itzykson, C., Zuber, J.: Quantum Field Theory. McGraw-Hill, New York (1980)Google Scholar
  10. 10.
    Petiau, G.: Contribution à la Théorie des Équations d’Ondes Corpusculaires. Thesis at Université de Paris, Paris (1936)zbMATHGoogle Scholar
  11. 11.
    Duffin, R.J.: On the characteristic matrices of covariant systems. Phys. Rev. 54, 1114 (1938)ADSCrossRefGoogle Scholar
  12. 12.
    Kemmer, N.: The particle aspect of meson theory. Proc. Roy. Soc. Lond. A 173, 91 (1939)ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    Novozhilov, Y.V.: Introduction to Elementary Particle Theory. Pergamon Press, Oxford (1975)Google Scholar
  14. 14.
    Corson, E.M.: Introduction to Tensors, Spinors and Relativistic Wave Equations, 2nd edn. Chelsea Publishing Company, New York (1953)zbMATHGoogle Scholar
  15. 15.
    Moshin, P.Y., Tomazelli, J.L.: On the non-relativistic limit of linear wave equations for zero and unity spin particles. Mod. Phys. Lett. A 23, 129 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Gastmans, R., Wu, T.T.: The Ubiquitous Photon. Oxford University Press, Oxford (1990)Google Scholar
  17. 17.
    Fushchich, W.I., Shtelen, W.M., Spichak, S.V.: On the connection between solutions of Dirac and Maxwell equations, dual Poincaré invariance and superalgebras of invariance and solutions of nonlinear Dirac equations. J. Phys. A Math. Gen. 24, 1683 (1991)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Królikowski, W.: Tensor form of the breit equation. Acta Phys. Pol. B14, 109 (1983)Google Scholar
  19. 19.
    Kälbermann, G.: Kemmer-Duffin-Petiau equations from two-body Dirac equations. Phys. Rev. C 37, 25 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    Gitman, D.M., Shelepin, A.L.: Fields on the Poincaré Group: arbitrary spin description and relativistic wave equations. Int. J. Theor. Phys. 40(3), 603 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Combescot, M.: The Girardeau’s fermion-boson procedure in the light of the composite-boson many-body theory. Eur. Phys. J. B 60, 289 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Gitman, D.M., Tyutin, I.V.: Quantization of Fields with Constraints. Springer-Verlag, Berlin (1990)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations