Skip to main content
Log in

Majorana-Oppenheimer Approach to Proca Field Equations

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A Dirac-like equation for a massive field obeying the classical Proca equations of motion (PMO) is proposed in close analogy with Majorana’s construct for Maxwell electrodynamics. Its underlying algebraic structure is examined and a plausible physical interpretation is discussed. The behavior of the PMO equations in the presence of an external electromagnetic field is also investigated in the low energy limit, via unitary transformations similar to the Foldy-Wouthuysen canonical transformation for a Dirac fermion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We are using Heaviside-Lorentz and natural units through the article.

  2. The spin operator can also be written in a more suggestive form as

    $$\begin{aligned} \vec {S}_{MO}=-i\vec {\alpha }_{MO}\times \vec {\alpha }_{MO}, \end{aligned}$$

    which is completely analogous to the corresponding operator of Dirac’s theory:

    $$\begin{aligned} \vec {S}_{D}=-\frac{i}{2}\vec {\alpha }_{D}\times \vec {\alpha }_{D}; \end{aligned}$$

    here, we label by (MO) the quantities related to the former theory and by (D) the ones related to the latter.

  3. There is an arbitrariness in the first column of every \(\alpha ^{\mu }\) matrices, due to the null element in the first component of both wave and source vectors. Then, we can explore this freedom to chose the unconstrained elements so that \(\alpha ^0\) be symmetric and \(\alpha ^i\) anti-hermitian.

  4. Also, the gauge relation

    $$\begin{aligned} \partial _t\varphi +\vec {\nabla }.\vec {A}=0, \end{aligned}$$

    emerges from (7) independently from the equations of motion in spite of being a natural consequence of the Proca equations.

  5. Here we denote by “\(T\)” the transpose of the matrix.

  6. The hamitonian form of the PMO equation will be discussed in the next section.

  7. Henceforth we shall always consider the PMO equation in the absense of sources (\(\Phi =0\)). Also, the momentum representation for the operators is to be assumed in all the following sections (unless explicit mention to another representation is made).

  8. Naturaly, this tranformation also induces a change

    $$\begin{aligned} \psi ^{'}=\hat{U}\psi \end{aligned}$$

    in the wave vector.

  9. The parameter \(\phi (\vec {p})\) was also chosen in order to provide \(\cos (2\left| \vec {p}\right| \phi )=\frac{m}{\sqrt{m^2+\left| \vec {p}\right| ^2}}\), with the positive sign, so that the particle’s energy be positive.

  10. Note that \(A_{\mu }\) is now an external field and should not be mistaken by the original Proca field from whose components the wave vector (5) is constructed.

  11. Hereafter we will suppress the explicit reference to the time-dependency of the quantities in the mathematical expressions for the sake of brevity.

  12. In order to be more precise, the term \(\big [\hat{M}(t),\big [\hat{M}(t),\big [\hat{M}(t),\big [\hat{M}(t),\hat{H}(t)\big ]\big ]\big ]\big ]\) is of maximal order \(1/m^3\), so that the higher commutators of this kind lay out of our approximation even in maximal order (giving higher order corrections to the hamiltonian). Analogously, the terms involving commutators with \(\dot{\hat{M}}(t)\) contribute only up to \(\big [\hat{M}(t),\big [\hat{M}(t),\dot{\hat{M}}(t)\big ]\big ]\), which is of maximal order \(1/m^3\).

  13. The commutator \(\big [\hat{M}^{'},\big [\hat{M}^{'},\hat{H}^{'}\big ]\big ]\) is of maximal order \(1/m^3\), so that the higher commutators of the same kind are of lower order and don’t contribute to the new hamiltonian in the approximation limit. Also, the commutators involving \(\dot{\hat{M}}^{'}\) do not contribute either since \(\big [\hat{M}^{'},\dot{\hat{M}}^{'}\big ]\) is already of order \(1/m^4\).

  14. The term \(\Big [\hat{M}^{''},\hat{H}^{''}\Big ]\) is of maximal order \(1/m^2\), so the higher commutators exceed the approximation range, as well as all the comutators involving \(\dot{\hat{M}}^{''}\).

  15. The term involving \(\hat{O}^{4}\) is still of order \(1/m^3\); however, it contributes to put in evidence the physical interpretation of some other terms in the final expression of the hamiltonian and, therefore, was intentionally retained.

  16. In these calculations, we return to the coordinate representation for the operators.

References

  1. Oppenheimer, J.R.: Note on light quanta and the electromagnetic field. Phys. Rev. 38, 725 (1931)

    Article  ADS  Google Scholar 

  2. Mignani, R., Recami, E., Baldo, M.: About a Dirac-like equation for the photon according to ettore Majorana. Nuovo Cim. 11, 568 (1974)

    Google Scholar 

  3. Giannetto, E.: A Majorana-oppenheimer formulation of quantum electrodynamics. Nuovo Cim. 44, 140 (1985)

    MathSciNet  Google Scholar 

  4. Esposito, S. Searching for an equation: Dirac, Majorana and the Others. arXiv:physics.hist-ph/1110.6878v1.

  5. Esposito, S.: Covariant Majorana formulation of electrodynamics. Found. Phys. 28(2), 231 (1998)

    Article  MathSciNet  Google Scholar 

  6. Varlamov, V.V.: A note on the Majorana-Oppenheimer Quantum Electrodynamics, arXiv:math-ph/0206008.

  7. Fernandes, G.A.M.A.: Representações Spinoriais do Grupo de Lorentz e Equações de Onda Relativísticas. Master’s thesis at Universidade Federal de Santa Catarina, Brazil (2012)

    Google Scholar 

  8. Foldy, L.L., Wouthuysen, S.A.: On the dirac theory of spin 1/2 particles and its non-relativistic limit. Phys. Rev. 78, 29 (1950)

    Article  ADS  MATH  Google Scholar 

  9. Itzykson, C., Zuber, J.: Quantum Field Theory. McGraw-Hill, New York (1980)

    Google Scholar 

  10. Petiau, G.: Contribution à la Théorie des Équations d’Ondes Corpusculaires. Thesis at Université de Paris, Paris (1936)

    MATH  Google Scholar 

  11. Duffin, R.J.: On the characteristic matrices of covariant systems. Phys. Rev. 54, 1114 (1938)

    Article  ADS  Google Scholar 

  12. Kemmer, N.: The particle aspect of meson theory. Proc. Roy. Soc. Lond. A 173, 91 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  13. Novozhilov, Y.V.: Introduction to Elementary Particle Theory. Pergamon Press, Oxford (1975)

    Google Scholar 

  14. Corson, E.M.: Introduction to Tensors, Spinors and Relativistic Wave Equations, 2nd edn. Chelsea Publishing Company, New York (1953)

    MATH  Google Scholar 

  15. Moshin, P.Y., Tomazelli, J.L.: On the non-relativistic limit of linear wave equations for zero and unity spin particles. Mod. Phys. Lett. A 23, 129 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Gastmans, R., Wu, T.T.: The Ubiquitous Photon. Oxford University Press, Oxford (1990)

    Google Scholar 

  17. Fushchich, W.I., Shtelen, W.M., Spichak, S.V.: On the connection between solutions of Dirac and Maxwell equations, dual Poincaré invariance and superalgebras of invariance and solutions of nonlinear Dirac equations. J. Phys. A Math. Gen. 24, 1683 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Królikowski, W.: Tensor form of the breit equation. Acta Phys. Pol. B14, 109 (1983)

    Google Scholar 

  19. Kälbermann, G.: Kemmer-Duffin-Petiau equations from two-body Dirac equations. Phys. Rev. C 37, 25 (1988)

    Article  ADS  Google Scholar 

  20. Gitman, D.M., Shelepin, A.L.: Fields on the Poincaré Group: arbitrary spin description and relativistic wave equations. Int. J. Theor. Phys. 40(3), 603 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Combescot, M.: The Girardeau’s fermion-boson procedure in the light of the composite-boson many-body theory. Eur. Phys. J. B 60, 289 (2007)

    Article  ADS  Google Scholar 

  22. Gitman, D.M., Tyutin, I.V.: Quantization of Fields with Constraints. Springer-Verlag, Berlin (1990)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

G.A.M.A. Fernandes thanks Capes for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. M. A. Fernandes.

Appendix

Appendix

Some commutators and terms relevant for the FW procedure in Sect. 3.2 are listed below:

$$\begin{aligned}&\Big [\hat{M},\hat{H}\Big ]=-\frac{i}{m}\alpha ^0\hat{O}^2-\frac{i}{2m}\alpha ^0\Big [\hat{O},\hat{\epsilon }\Big ]+i\hat{O};\end{aligned}$$
(46)
$$\begin{aligned}&\Big [\hat{M},\Big [\hat{M},\hat{H}\Big ]\Big ]=\frac{1}{m^2}\hat{O}^3+\frac{1}{4m^2}\Big [\hat{O},\Big [\hat{O},\hat{\epsilon }\Big ]\Big ]+\frac{1}{m}\alpha ^0\hat{O}^2;\end{aligned}$$
(47)
$$\begin{aligned}&\Big [\hat{M},\Big [\hat{M},\Big [\hat{M},\hat{H}\Big ]\Big ]\Big ]=-\frac{i}{m^3}\alpha ^0\hat{O}^4-\frac{i}{8m^3}\alpha ^0\Big [\hat{O},\Big [\hat{O},\Big [\hat{O},\hat{\epsilon }\Big ]\Big ]\Big ]+\frac{i}{m^2}\hat{O}^3;\end{aligned}$$
(48)
$$\begin{aligned}&\Big [\hat{M},\Big [\hat{M},\Big [\hat{M},\Big [\hat{M},m\alpha ^0\Big ]\Big ]\Big ]\Big ]=\frac{1}{m^3}\alpha ^0\hat{O}^4;\end{aligned}$$
(49)
$$\begin{aligned}&\Big [\hat{M},\dot{\hat{M}}\Big ]=\frac{1}{4m^2}\Big [\hat{O},\dot{\hat{O}}\Big ];\end{aligned}$$
(50)
$$\begin{aligned}&\Big [\hat{M},\Big [\hat{M},\dot{\hat{M}}\Big ]\Big ]=-\frac{i}{8m^3}\alpha ^0\Big [\hat{O},\Big [\hat{O},\dot{\hat{O}}\Big ]\Big ];\end{aligned}$$
(51)
$$\begin{aligned}&\Big [\hat{M}^{'},\hat{H}^{'}\Big ]=-\frac{i}{m}\alpha ^0\hat{O}^{'2}-\frac{i}{2m}\alpha ^0\Big [\hat{O}^{'},\hat{\epsilon }^{'}\Big ]+i\hat{O}^{'};\end{aligned}$$
(52)
$$\begin{aligned}&\Big [\hat{M}^{'},\Big [\hat{M}^{'},\hat{H}^{'}\Big ]\Big ]=\frac{1}{m^2}\hat{O}^{'3}+\frac{1}{4m^2}\Big [\hat{O}^{'},\Big [\hat{O}^{'},\hat{\epsilon }^{'}\Big ]\Big ]+\frac{1}{m}\alpha ^0\hat{O}^{'2};\end{aligned}$$
(53)
$$\begin{aligned}&\Big [\hat{M}^{''},\hat{H}^{''}\Big ]=-\frac{i}{2m}\alpha ^0\Big [\hat{O}^{''},\hat{\epsilon }^{''}\Big ]+i\hat{O}^{''};\end{aligned}$$
(54)
$$\begin{aligned}&\hat{O}^2=\Big (\hat{\vec {p}}-e\vec {A}\Big )^2-ie\Theta \vec {\alpha }.\vec {B};\end{aligned}$$
(55)
$$\begin{aligned}&\hat{O}^4=\Big (\hat{\vec {p}}-e\vec {A}\Big )^4-ie\Big (\hat{\vec {p}}-e\vec {A}\Big )^2\Theta \vec {\alpha }.\vec {B}-ie\Theta \vec {\alpha }.\vec {B}\Big (\hat{\vec {p}}-e\vec {A}\Big )^2-e^2\Big (\Theta \vec {\alpha }.\vec {B}\Big )^2;\end{aligned}$$
(56)
$$\begin{aligned}&\Big [\hat{O},\dot{\hat{O}}\Big ]=\Big [\hat{O},\alpha ^0\vec {\alpha }.\hat{\dot{\vec {p}}}\Big ]-e\Big [\hat{O},\alpha ^0\vec {\alpha }.\partial _t\vec {A}\Big ];\end{aligned}$$
(57)
$$\begin{aligned}&\Big [\hat{O},\Big [\hat{O},\hat{\epsilon }\Big ]\Big ]=e\Big (\vec {\nabla }.\vec {E}\Big )-e\Theta \vec {\alpha }.\Big (\vec {\nabla }\times \vec {E}\Big )+2ie\Theta \vec {\alpha }.\left( \vec {E}\times \Big (\hat{\vec {p}}-e\vec {A}\Big )\right) +\nonumber \\&\quad \qquad \qquad \qquad \quad +ie\Big [\hat{O},\alpha ^0\vec {\alpha }.\partial _t\vec {A}\Big ]. \end{aligned}$$
(58)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomazelli, J.L., Fernandes, G.A.M.A. Majorana-Oppenheimer Approach to Proca Field Equations. Found Phys 44, 973–989 (2014). https://doi.org/10.1007/s10701-014-9824-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9824-y

Keywords

Navigation