Local Acausality

Abstract

A fair amount of recent scholarship has been concerned with correcting a supposedly wrong, but wide-spread, assessment of the consequences of the empirical falsification of Bell-type inequalities. In particular, it has been claimed that Bell-type inequalities follow from “locality tout court” without additional assumptions such as “realism” or “hidden variables”. However, this line of reasoning conflates restrictions on the spatio-temporal relation between causes and their effects (“locality”) and the assumption of a cause for every event (“causality”). It thus fails to recognize a substantial restriction of the class of theories that is falsified through Bell-type inequalities.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. 1.

    Henceforth, I subsume also the similar constraints under the term “Bell’s Inequality”.

  2. 2.

    Other current names are “factorizability” [16] for “local causality”, “completeness” and “locality” [26], or “causality” and “hidden locality” [40] for “outcome independence” and “parameter independence”.

  3. 3.

    For an illuminating discussion and a proposal of how to untangle the argument, see [17, Chap. 3].

  4. 4.

    Wüthrich [41] makes a similar point, but relies on the particular derivation of Bell’s Inequality by Graßhoff et al. [23].

  5. 5.

    Bell [7, p. 149] and cf. Goldstein [22, Sect. 2]. Bell also gave another summary of the EPR argument, which, however, is unnecessarily long for the present purposes [5, pp. 14–15].

  6. 6.

    The complete passage reads: “The EPRB correlations are such that the result of the experiment on one side immediately foretells that on the other, whenever the analyzers happen to be parallel. If we do not accept the intervention on one side as a causal influence on the other, we seem obliged to admit that the results on both sides are determined in advance anyway, independently of the intervention on the other side, by signals from the source and by the local magnet setting.” [7, p. 149]

  7. 7.

    See, e.g., [23, 38, 40]. As Bell rightly emphasizes, determinism is not an assumption of the derivation of Bell’s inequality [7, p. 143]. It follows from the other assumptions in case of perfect correlations.

References

  1. 1.

    Albert, D.Z.: Quantum Mechanics and Experience. Harvard University Press, Cambridge (1992)

    Google Scholar 

  2. 2.

    Albert, D.Z., Galchen, R.: A quantum threat to special relativity. Scientific American 3, 26–33 (2009)

    Google Scholar 

  3. 3.

    Aspect, A.: Be or not to be local. Nature 446, 866–867 (2007)

    ADS  Article  Google Scholar 

  4. 4.

    Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Physical Review Letters 49(25), 1804–1807 (1982)

    ADS  Article  MathSciNet  Google Scholar 

  5. 5.

    Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1(3), 195–200 (1964). Page references to reprint in Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, pp. 14–21. Cambridge University Press, Cambridge (2004)

  6. 6.

    Bell, J.S.: The theory of local beables. TH-2053-CERN (1975). Page references to reprint in Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, pp. 52–62. Cambridge University Press, Cambridge (2004)

  7. 7.

    Bell, J.S.: Bertlmann’s socks and the nature of reality. Journal de Physique 42, C2 41–61 (1981). Page references to reprint in Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, pp. 139–158. Cambridge University Press, Cambridge (2004)

  8. 8.

    Bell, J.S.: “La nouvelle cuisine”. In: Sarlemijn, A., Kroes, P. (eds.) Between Science and Technology. Elsevier Science Publishers (1990). Page references to reprint in Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, pp. 232–248. Cambridge University Press, Cambridge (2004)

  9. 9.

    Bohm, D.: A suggested interpretation of the quantum theory in terms of Hidden Variables I. Phys. Rev. 85(2), 166–179 (1952a)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  10. 10.

    Bohm, D.: A suggested interpretation of the quantum theory in terms of Hidden Variables II. Phys. Rev. 85(2), 180–193 (1952b)

    ADS  Article  MathSciNet  Google Scholar 

  11. 11.

    Butterfield, J.: Bell’s theorem: what it takes. Br. J. Phil. Sci. 43(1), 41–83 (1992)

    Article  MathSciNet  Google Scholar 

  12. 12.

    Butterfield, J.: A space-time approach to the Bell inequality. In: Cushing, J., McMullin, E. (eds.) Philosophical Consequences of Quantum Theory: Reflections on Bell’s Theorem, pp. 114–144. University of Notre Dame Press, Notre Dame (1989)

  13. 13.

    Cartwright, N. (ed.): What econometrics can teach quantum physics: causality and the Bell inequality. Nature’s Capacities and Their Measurement, pp. 231–250. Oxford University Press, Oxford (1994)

  14. 14.

    Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D 10(2), 526–535 (1974)

    ADS  Article  Google Scholar 

  15. 15.

    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777–780 (1935)

    ADS  Article  MATH  Google Scholar 

  16. 16.

    Fine, A. Correlations and physical locality. In: PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1980, pp. 535–562 (1980)

  17. 17.

    Fine, A.: The Shaky Game: Einstein Realism and the Quantum Theory. The University of Chicago Press, Chicago (1986)

    Google Scholar 

  18. 18.

    Fine, A.: Do correlations need to be explained? In: Cushing, J., McMullin, E. (eds.) Philosophical Consequences of Quantum Theory: Reflections on Bell’s Theorem, pp. 175–194. University of Notre Dame Press, Notre Dame (1989)

  19. 19.

    Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34(2), 470–491 (1986)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  20. 20.

    Gisin, N.: Non-realism: deep thought or a soft option? Found. Phys. 42(1), 80–85 (2012)

  21. 21.

    Goldstein, S. et al. Bell’s theorem. In: Scholarpedia 6.10. revision #91049, p. 8378 (2011)

  22. 22.

    Goldstein, S.: Bohmian mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University, Stanford (2013)

    Google Scholar 

  23. 23.

    Graßhoff, G., Portmann, S., Wüthrich, A.: Minimal assumption derivation of a Bell-type inequality. Br. J. Phil. Sci. 56(4), 663–680 (2005)

  24. 24.

    Greenberger, D.M., et al.: Bell’s theorem without inequalities. Am. J. Phys. 58(12), 1131–1143 (1990)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  25. 25.

    Gyenis, B., Rédei, M.: When can statistical theories be causally closed? Found. Phys. 34(9), 1285–1303 (2004)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  26. 26.

    Jarrett, J.P.: On the physical significance of the locality conditions in the Bell arguments. Nous 18(4), 569–589 (1984)

    Article  MathSciNet  Google Scholar 

  27. 27.

    Laudisa, F.: Non-local realistic theories and the scope of the Bell theorem. Found. Phys. 38(12), 1110–1132 (2008)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  28. 28.

    Maudlin, T.: Quantum Non-locality and Relativity: Metaphysical Intimations of Modern Physics, 2nd edn. Blackwell, Oxford (2002)

  29. 29.

    Mermin, N.D.: Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 65(3), 803–815 (1993)

    ADS  Article  MathSciNet  Google Scholar 

  30. 30.

    Norsen, T.: Bell locality and the nonlocal character of nature. Found. Phys. Lett. 19, 633–655 (2006a)

    Article  MATH  MathSciNet  Google Scholar 

  31. 31.

    Norsen, T.: EPR and Bell locality. In: AIP Conference Proceedings, vol. 844, pp. 281–293 (2006)

  32. 32.

    Norsen, T.: Against realism. Found. Phys. 37, 311–340 (2007)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  33. 33.

    Norsen, T.: Local causality and completeness: Bell vs. Jarrett. Found. Phys. 39(3), 273–294 (2009)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  34. 34.

    Norsen, T.: John S. Bell’s concept of local causality. Am. J. Phys. 79, 1261–1275 (2011)

    ADS  Article  Google Scholar 

  35. 35.

    Pan, J.-W., et al.: Experimental test of quantum nonlocality in threephoton Greenberger–Horne–Zeilinger entanglement. Nature 403(6769), 515–519 (2000)

    ADS  Article  Google Scholar 

  36. 36.

    Reichenbach, H.: In: Reichenbach, M. (ed.) The Direction of Time. Dover Publications, Mineola (1956)

  37. 37.

    Shimony, A.: Events and processes in the quantum world. In: Penrose, R., Isham, C. (eds.) Concepts, Quantum, in Space and Time. Clarendon Press, Oxford (1986). Reprinted in Shimony, A.: The Search for a Naturalistic World View, vol. 2, pp. 140–162. Cambridge University Press, Cambridge (1993)

  38. 38.

    Suppes, P., Zanotti, M.: On the determinism of hidden variable theories with strict correlation and conditional statistical independence of observables. In: Suppes, P. (ed.) Logic and Probability in Quantum Mechanics, pp. 445–455. Reidel, Dordrecht (1976)

    Google Scholar 

  39. 39.

    Tittel, W., et al.: Experimental demonstration of quantum correlations over more than 10 km. Phys. Rev. A 57(5), 3229–3232 (1998)

    ADS  Article  Google Scholar 

  40. 40.

    Van Fraassen, B.C.: The Charybdis of realism: Epistemological implications of Bell’s inequality. Synthese 52(1), 25–38 (1982). Reprinted in revised form in Cushing, J., McMullin, E. (eds.) Philosophical Consequences of Quantum Theory: Reflections on Bell’s Theorem, pp. 97–113. University of Notre Dame Press, Notre Dame (1989)

  41. 41.

    Wüthrich, A.: Locality, causality, and realism in the derivation of Bell’s inequality. In: Sauer, T., Wüthrich, A. (eds.) New Vistas on Old Problems: Recent Approaches to the Foundations of Quantum Mechanics, pp. 149–161. Max Planck Research Library for the History and Development of Knowledge. Edition Open Access, Berlin (2013)

Download references

Acknowledgments

Research for this article was funded by the Swiss National Science Foundation (Project No. 105211-129730). The project was hosted by the University of Bern’s Institute for Philosophy. I thank the principal investigator Gerd Graßhoff as well as Matthias Egg, Paul Näger, Samuel Portmann, Tilman Sauer, Andreas Verdun, Christian Wüthrich, and anonymous referees for detailed comments on the manuscript or other much valuable feedback.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adrian Wüthrich.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wüthrich, A. Local Acausality. Found Phys 44, 594–609 (2014). https://doi.org/10.1007/s10701-014-9796-y

Download citation

Keywords

  • Bell’s inequality
  • Locality
  • Causality
  • Realism
  • Hidden variables
  • EPR argument
  • Common causes
  • Screening-off