Advertisement

Foundations of Physics

, Volume 44, Issue 6, pp 594–609 | Cite as

Local Acausality

  • Adrian Wüthrich
Article

Abstract

A fair amount of recent scholarship has been concerned with correcting a supposedly wrong, but wide-spread, assessment of the consequences of the empirical falsification of Bell-type inequalities. In particular, it has been claimed that Bell-type inequalities follow from “locality tout court” without additional assumptions such as “realism” or “hidden variables”. However, this line of reasoning conflates restrictions on the spatio-temporal relation between causes and their effects (“locality”) and the assumption of a cause for every event (“causality”). It thus fails to recognize a substantial restriction of the class of theories that is falsified through Bell-type inequalities.

Keywords

Bell’s inequality Locality Causality Realism Hidden variables EPR argument Common causes  Screening-off 

Notes

Acknowledgments

Research for this article was funded by the Swiss National Science Foundation (Project No. 105211-129730). The project was hosted by the University of Bern’s Institute for Philosophy. I thank the principal investigator Gerd Graßhoff as well as Matthias Egg, Paul Näger, Samuel Portmann, Tilman Sauer, Andreas Verdun, Christian Wüthrich, and anonymous referees for detailed comments on the manuscript or other much valuable feedback.

References

  1. 1.
    Albert, D.Z.: Quantum Mechanics and Experience. Harvard University Press, Cambridge (1992)Google Scholar
  2. 2.
    Albert, D.Z., Galchen, R.: A quantum threat to special relativity. Scientific American 3, 26–33 (2009)Google Scholar
  3. 3.
    Aspect, A.: Be or not to be local. Nature 446, 866–867 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Physical Review Letters 49(25), 1804–1807 (1982)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1(3), 195–200 (1964). Page references to reprint in Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, pp. 14–21. Cambridge University Press, Cambridge (2004)Google Scholar
  6. 6.
    Bell, J.S.: The theory of local beables. TH-2053-CERN (1975). Page references to reprint in Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, pp. 52–62. Cambridge University Press, Cambridge (2004)Google Scholar
  7. 7.
    Bell, J.S.: Bertlmann’s socks and the nature of reality. Journal de Physique 42, C2 41–61 (1981). Page references to reprint in Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, pp. 139–158. Cambridge University Press, Cambridge (2004)Google Scholar
  8. 8.
    Bell, J.S.: “La nouvelle cuisine”. In: Sarlemijn, A., Kroes, P. (eds.) Between Science and Technology. Elsevier Science Publishers (1990). Page references to reprint in Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, pp. 232–248. Cambridge University Press, Cambridge (2004)Google Scholar
  9. 9.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of Hidden Variables I. Phys. Rev. 85(2), 166–179 (1952a)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of Hidden Variables II. Phys. Rev. 85(2), 180–193 (1952b)ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    Butterfield, J.: Bell’s theorem: what it takes. Br. J. Phil. Sci. 43(1), 41–83 (1992)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Butterfield, J.: A space-time approach to the Bell inequality. In: Cushing, J., McMullin, E. (eds.) Philosophical Consequences of Quantum Theory: Reflections on Bell’s Theorem, pp. 114–144. University of Notre Dame Press, Notre Dame (1989)Google Scholar
  13. 13.
    Cartwright, N. (ed.): What econometrics can teach quantum physics: causality and the Bell inequality. Nature’s Capacities and Their Measurement, pp. 231–250. Oxford University Press, Oxford (1994)Google Scholar
  14. 14.
    Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D 10(2), 526–535 (1974)ADSCrossRefGoogle Scholar
  15. 15.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777–780 (1935)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Fine, A. Correlations and physical locality. In: PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1980, pp. 535–562 (1980)Google Scholar
  17. 17.
    Fine, A.: The Shaky Game: Einstein Realism and the Quantum Theory. The University of Chicago Press, Chicago (1986)Google Scholar
  18. 18.
    Fine, A.: Do correlations need to be explained? In: Cushing, J., McMullin, E. (eds.) Philosophical Consequences of Quantum Theory: Reflections on Bell’s Theorem, pp. 175–194. University of Notre Dame Press, Notre Dame (1989)Google Scholar
  19. 19.
    Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34(2), 470–491 (1986)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Gisin, N.: Non-realism: deep thought or a soft option? Found. Phys. 42(1), 80–85 (2012)Google Scholar
  21. 21.
    Goldstein, S. et al. Bell’s theorem. In: Scholarpedia 6.10. revision #91049, p. 8378 (2011)Google Scholar
  22. 22.
    Goldstein, S.: Bohmian mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University, Stanford (2013)Google Scholar
  23. 23.
    Graßhoff, G., Portmann, S., Wüthrich, A.: Minimal assumption derivation of a Bell-type inequality. Br. J. Phil. Sci. 56(4), 663–680 (2005)Google Scholar
  24. 24.
    Greenberger, D.M., et al.: Bell’s theorem without inequalities. Am. J. Phys. 58(12), 1131–1143 (1990)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Gyenis, B., Rédei, M.: When can statistical theories be causally closed? Found. Phys. 34(9), 1285–1303 (2004)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Jarrett, J.P.: On the physical significance of the locality conditions in the Bell arguments. Nous 18(4), 569–589 (1984)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Laudisa, F.: Non-local realistic theories and the scope of the Bell theorem. Found. Phys. 38(12), 1110–1132 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Maudlin, T.: Quantum Non-locality and Relativity: Metaphysical Intimations of Modern Physics, 2nd edn. Blackwell, Oxford (2002)Google Scholar
  29. 29.
    Mermin, N.D.: Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 65(3), 803–815 (1993)ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    Norsen, T.: Bell locality and the nonlocal character of nature. Found. Phys. Lett. 19, 633–655 (2006a)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Norsen, T.: EPR and Bell locality. In: AIP Conference Proceedings, vol. 844, pp. 281–293 (2006)Google Scholar
  32. 32.
    Norsen, T.: Against realism. Found. Phys. 37, 311–340 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Norsen, T.: Local causality and completeness: Bell vs. Jarrett. Found. Phys. 39(3), 273–294 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Norsen, T.: John S. Bell’s concept of local causality. Am. J. Phys. 79, 1261–1275 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Pan, J.-W., et al.: Experimental test of quantum nonlocality in threephoton Greenberger–Horne–Zeilinger entanglement. Nature 403(6769), 515–519 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    Reichenbach, H.: In: Reichenbach, M. (ed.) The Direction of Time. Dover Publications, Mineola (1956)Google Scholar
  37. 37.
    Shimony, A.: Events and processes in the quantum world. In: Penrose, R., Isham, C. (eds.) Concepts, Quantum, in Space and Time. Clarendon Press, Oxford (1986). Reprinted in Shimony, A.: The Search for a Naturalistic World View, vol. 2, pp. 140–162. Cambridge University Press, Cambridge (1993)Google Scholar
  38. 38.
    Suppes, P., Zanotti, M.: On the determinism of hidden variable theories with strict correlation and conditional statistical independence of observables. In: Suppes, P. (ed.) Logic and Probability in Quantum Mechanics, pp. 445–455. Reidel, Dordrecht (1976)CrossRefGoogle Scholar
  39. 39.
    Tittel, W., et al.: Experimental demonstration of quantum correlations over more than 10 km. Phys. Rev. A 57(5), 3229–3232 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    Van Fraassen, B.C.: The Charybdis of realism: Epistemological implications of Bell’s inequality. Synthese 52(1), 25–38 (1982). Reprinted in revised form in Cushing, J., McMullin, E. (eds.) Philosophical Consequences of Quantum Theory: Reflections on Bell’s Theorem, pp. 97–113. University of Notre Dame Press, Notre Dame (1989)Google Scholar
  41. 41.
    Wüthrich, A.: Locality, causality, and realism in the derivation of Bell’s inequality. In: Sauer, T., Wüthrich, A. (eds.) New Vistas on Old Problems: Recent Approaches to the Foundations of Quantum Mechanics, pp. 149–161. Max Planck Research Library for the History and Development of Knowledge. Edition Open Access, Berlin (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institut für Philosophie, Literatur-, Wissenschafts- und TechnikgeschichteTechnische Universität BerlinBerlinGermany

Personalised recommendations