Foundations of Physics

, Volume 44, Issue 6, pp 594–609 | Cite as

Local Acausality

Article

Abstract

A fair amount of recent scholarship has been concerned with correcting a supposedly wrong, but wide-spread, assessment of the consequences of the empirical falsification of Bell-type inequalities. In particular, it has been claimed that Bell-type inequalities follow from “locality tout court” without additional assumptions such as “realism” or “hidden variables”. However, this line of reasoning conflates restrictions on the spatio-temporal relation between causes and their effects (“locality”) and the assumption of a cause for every event (“causality”). It thus fails to recognize a substantial restriction of the class of theories that is falsified through Bell-type inequalities.

Keywords

Bell’s inequality Locality Causality Realism Hidden variables EPR argument Common causes  Screening-off 

References

  1. 1.
    Albert, D.Z.: Quantum Mechanics and Experience. Harvard University Press, Cambridge (1992)Google Scholar
  2. 2.
    Albert, D.Z., Galchen, R.: A quantum threat to special relativity. Scientific American 3, 26–33 (2009)Google Scholar
  3. 3.
    Aspect, A.: Be or not to be local. Nature 446, 866–867 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Physical Review Letters 49(25), 1804–1807 (1982)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1(3), 195–200 (1964). Page references to reprint in Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, pp. 14–21. Cambridge University Press, Cambridge (2004)Google Scholar
  6. 6.
    Bell, J.S.: The theory of local beables. TH-2053-CERN (1975). Page references to reprint in Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, pp. 52–62. Cambridge University Press, Cambridge (2004)Google Scholar
  7. 7.
    Bell, J.S.: Bertlmann’s socks and the nature of reality. Journal de Physique 42, C2 41–61 (1981). Page references to reprint in Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, pp. 139–158. Cambridge University Press, Cambridge (2004)Google Scholar
  8. 8.
    Bell, J.S.: “La nouvelle cuisine”. In: Sarlemijn, A., Kroes, P. (eds.) Between Science and Technology. Elsevier Science Publishers (1990). Page references to reprint in Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, pp. 232–248. Cambridge University Press, Cambridge (2004)Google Scholar
  9. 9.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of Hidden Variables I. Phys. Rev. 85(2), 166–179 (1952a)ADSCrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of Hidden Variables II. Phys. Rev. 85(2), 180–193 (1952b)ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    Butterfield, J.: Bell’s theorem: what it takes. Br. J. Phil. Sci. 43(1), 41–83 (1992)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Butterfield, J.: A space-time approach to the Bell inequality. In: Cushing, J., McMullin, E. (eds.) Philosophical Consequences of Quantum Theory: Reflections on Bell’s Theorem, pp. 114–144. University of Notre Dame Press, Notre Dame (1989)Google Scholar
  13. 13.
    Cartwright, N. (ed.): What econometrics can teach quantum physics: causality and the Bell inequality. Nature’s Capacities and Their Measurement, pp. 231–250. Oxford University Press, Oxford (1994)Google Scholar
  14. 14.
    Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D 10(2), 526–535 (1974)ADSCrossRefGoogle Scholar
  15. 15.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777–780 (1935)ADSCrossRefMATHGoogle Scholar
  16. 16.
    Fine, A. Correlations and physical locality. In: PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1980, pp. 535–562 (1980)Google Scholar
  17. 17.
    Fine, A.: The Shaky Game: Einstein Realism and the Quantum Theory. The University of Chicago Press, Chicago (1986)Google Scholar
  18. 18.
    Fine, A.: Do correlations need to be explained? In: Cushing, J., McMullin, E. (eds.) Philosophical Consequences of Quantum Theory: Reflections on Bell’s Theorem, pp. 175–194. University of Notre Dame Press, Notre Dame (1989)Google Scholar
  19. 19.
    Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34(2), 470–491 (1986)ADSCrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Gisin, N.: Non-realism: deep thought or a soft option? Found. Phys. 42(1), 80–85 (2012)Google Scholar
  21. 21.
    Goldstein, S. et al. Bell’s theorem. In: Scholarpedia 6.10. revision #91049, p. 8378 (2011)Google Scholar
  22. 22.
    Goldstein, S.: Bohmian mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University, Stanford (2013)Google Scholar
  23. 23.
    Graßhoff, G., Portmann, S., Wüthrich, A.: Minimal assumption derivation of a Bell-type inequality. Br. J. Phil. Sci. 56(4), 663–680 (2005)Google Scholar
  24. 24.
    Greenberger, D.M., et al.: Bell’s theorem without inequalities. Am. J. Phys. 58(12), 1131–1143 (1990)ADSCrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Gyenis, B., Rédei, M.: When can statistical theories be causally closed? Found. Phys. 34(9), 1285–1303 (2004)ADSCrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Jarrett, J.P.: On the physical significance of the locality conditions in the Bell arguments. Nous 18(4), 569–589 (1984)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Laudisa, F.: Non-local realistic theories and the scope of the Bell theorem. Found. Phys. 38(12), 1110–1132 (2008)ADSCrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Maudlin, T.: Quantum Non-locality and Relativity: Metaphysical Intimations of Modern Physics, 2nd edn. Blackwell, Oxford (2002)Google Scholar
  29. 29.
    Mermin, N.D.: Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 65(3), 803–815 (1993)ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    Norsen, T.: Bell locality and the nonlocal character of nature. Found. Phys. Lett. 19, 633–655 (2006a)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Norsen, T.: EPR and Bell locality. In: AIP Conference Proceedings, vol. 844, pp. 281–293 (2006)Google Scholar
  32. 32.
    Norsen, T.: Against realism. Found. Phys. 37, 311–340 (2007)ADSCrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Norsen, T.: Local causality and completeness: Bell vs. Jarrett. Found. Phys. 39(3), 273–294 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Norsen, T.: John S. Bell’s concept of local causality. Am. J. Phys. 79, 1261–1275 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Pan, J.-W., et al.: Experimental test of quantum nonlocality in threephoton Greenberger–Horne–Zeilinger entanglement. Nature 403(6769), 515–519 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    Reichenbach, H.: In: Reichenbach, M. (ed.) The Direction of Time. Dover Publications, Mineola (1956)Google Scholar
  37. 37.
    Shimony, A.: Events and processes in the quantum world. In: Penrose, R., Isham, C. (eds.) Concepts, Quantum, in Space and Time. Clarendon Press, Oxford (1986). Reprinted in Shimony, A.: The Search for a Naturalistic World View, vol. 2, pp. 140–162. Cambridge University Press, Cambridge (1993)Google Scholar
  38. 38.
    Suppes, P., Zanotti, M.: On the determinism of hidden variable theories with strict correlation and conditional statistical independence of observables. In: Suppes, P. (ed.) Logic and Probability in Quantum Mechanics, pp. 445–455. Reidel, Dordrecht (1976)CrossRefGoogle Scholar
  39. 39.
    Tittel, W., et al.: Experimental demonstration of quantum correlations over more than 10 km. Phys. Rev. A 57(5), 3229–3232 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    Van Fraassen, B.C.: The Charybdis of realism: Epistemological implications of Bell’s inequality. Synthese 52(1), 25–38 (1982). Reprinted in revised form in Cushing, J., McMullin, E. (eds.) Philosophical Consequences of Quantum Theory: Reflections on Bell’s Theorem, pp. 97–113. University of Notre Dame Press, Notre Dame (1989)Google Scholar
  41. 41.
    Wüthrich, A.: Locality, causality, and realism in the derivation of Bell’s inequality. In: Sauer, T., Wüthrich, A. (eds.) New Vistas on Old Problems: Recent Approaches to the Foundations of Quantum Mechanics, pp. 149–161. Max Planck Research Library for the History and Development of Knowledge. Edition Open Access, Berlin (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institut für Philosophie, Literatur-, Wissenschafts- und TechnikgeschichteTechnische Universität BerlinBerlinGermany

Personalised recommendations