Skip to main content
Log in

Canonical Quantization of a Massive Weyl Field

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We construct a consistent theory of a quantum massive Weyl field. We start with the formulation of the classical field theory approach for the description of massive Weyl fields. It is demonstrated that the standard Lagrange formalism cannot be applied for the studies of massive first-quantized Weyl spinors. Nevertheless we show that the classical field theory description of massive Weyl fields can be implemented in frames of the Hamilton formalism or using the extended Lagrange formalism. Then we carry out a canonical quantization of the system. The independent ways for the quantization of a massive Weyl field are discussed. We also compare our results with the previous approaches for the treatment of massive Weyl spinors. Finally the new interpretation of the Majorana condition is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kobzarev, I.Y., Martem’yanov, B.V., Okun’, L.B., Shchepkin, M.G.: The phenomenology of neutrino oscillations. Sov. J. Nucl. Phys. 32, 823–828 (1980)

    Google Scholar 

  2. Schechter, J., Valle, J.W.F.: Neutrino masses in SU(2)⊗U(1) theories. Phys. Rev. D 22, 2227–2235 (1980)

    Article  ADS  Google Scholar 

  3. Auger, M., et al. (EXO Collaboration): Search for neutrinoless double-beta decay in 136Xe with EXO-200. Phys. Rev. Lett. 109, 032505 (2012). arXiv:1205.5608 [hep-ex]

    Article  ADS  Google Scholar 

  4. Andreotti, E., et al. (CUORICINO Collaboration): 130Te neutrinoless double-beta decay with CUORICINO. Astropart. Phys. 34, 822–831 (2011). arXiv:1012.3266 [nucl-ex]

    Article  ADS  Google Scholar 

  5. Chamon, C., Jackiw, R., Nishida, Y., Pi, S.-Y., Santos, L.: Quantizing Majorana fermions in a superconductor. Phys. Rev. B 81, 224515 (2010). arXiv:1001.2760 [cond-mat.str-el]

    Article  ADS  Google Scholar 

  6. Itzykson, C., Zuber, J.-B.: Quantum Field Theory, p. 694. McGraw-Hill, New York (1980)

    Google Scholar 

  7. Goldhaber, M., Grodzins, L., Sunyar, A.W.: Helicity of neutrinos. Phys. Rev. 109, 1015–1017 (1958)

    Article  ADS  Google Scholar 

  8. Fukugita, M., Yanagida, T.: Physics of Neutrinos and Applications to Astrophysics, pp. 289–319. Springer, Berlin (2003)

    Google Scholar 

  9. Bogoliubov, N.N., Shirkov, D.V.: Introduction to the Theory of Quantized Fields, 3rd edn. pp. 10–89. Wiley, New York (1980)

    Google Scholar 

  10. Schechter, J., Valle, J.W.F.: Majorana neutrinos and magnetic fields. Phys. Rev. D 24, 1883–1889 (1981)

    Article  ADS  Google Scholar 

  11. Weinberg, S.: The Quantum Theory of Fields: Foundations, 2nd edn. pp. 292–338. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  12. Ahluwalia, D.V., Lee, C.-Y., Schritt, D.: Self-interacting Elko dark matter with an axis of locality. Phys. Rev. D 83, 065017 (2011). arXiv:0911.2947 [hep-ph]

    Article  ADS  Google Scholar 

  13. An, F.P., et al. (Daya Bay Collaboration): Observation of electron-antineutrino disappearance at Daya Bay. Phys. Rev. Lett. 108, 171803 (2012). arXiv:1203.1669 [hep-ex]

    Article  ADS  Google Scholar 

  14. Abe, Y., et al. (Double Chooz Collaboration): Indication of reactor \(\bar{\nu}_{e}\) disappearance in the double Chooz experiment. Phys. Rev. Lett. 108, 131801 (2012). arXiv:1112.6353 [hep-ex]

    Article  ADS  Google Scholar 

  15. Dvornikov, M.: Field theory description of neutrino oscillations. In: Greene, J.P. (ed.) Neutrinos: Properties, Sources and Detection, pp. 23–90. NOVA Science Publishers, New York (2011). arXiv:1011.4300 [hep-ph]

    Google Scholar 

  16. Faddeev, L., Jackiw, R.: Hamiltonian reduction of unconstrained and constrained systems. Phys. Rev. Lett. 60, 1692–1694 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Gantmacher, F.: Lectures in Analytical Mechanics, pp. 71–80. Mir Publishers, Moscow (1975)

    Google Scholar 

  18. Gitman, D.M., Tyutin, I.V.: Quantization of Fields with Constraints, pp. 13–21. Springer, Berlin (1990)

    MATH  Google Scholar 

  19. Berestetskiĭ, V.B., Lifshitz, E.M., Pitaevskiĭ, L.P.: Quantum Electrodynamics, 2nd edn. p. 86. Pergamon, Oxford (1980)

    Google Scholar 

  20. Case, K.M.: Reformulation of the Majorana theory of the neutrino. Phys. Rev. 107, 307–316 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Gitman, D.M., Gonçalves, A.E., Tyutin, I.V.: New pseudoclassical model for Weyl particles. Phys. Rev. D 50, 5439–5442 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  22. Barut, A.O., Zanghi, N.: Classical model of the Dirac electron. Phys. Rev. Lett. 52, 2009–2012 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  23. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields, 4th edn. pp. 140–143. Butterworth-Heinemann, Amsterdam (1994)

    Google Scholar 

  24. Zakharov, V.E., Kuznetsov, E.A.: Hamiltonian formalism for nonlinear waves. Phys. Usp. 40, 1087–1116 (1997)

    Article  ADS  Google Scholar 

  25. Dvornikov, M., Maalampi, J.: Oscillations of Dirac and Majorana neutrinos in matter and a magnetic field. Phys. Rev. D 79, 113015 (2009). arXiv:0809.0963 [hep-ph]

    Article  ADS  Google Scholar 

  26. Joos, E., Zeh, H.D., Kiefer, C., Giulini, D.J.W., Kupsch, J., Stamatescu, I.-O.: Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. Springer, Berlin (2003)

    Google Scholar 

Download references

Acknowledgements

I am very thankful to D.M. Gitman, J. Lukierski, and J. Maalampi for helpful discussions, to S. Forte for bringing Ref. [16] to my attention, as well as to FAPESP (Brazil) for a grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Dvornikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dvornikov, M. Canonical Quantization of a Massive Weyl Field. Found Phys 42, 1469–1479 (2012). https://doi.org/10.1007/s10701-012-9679-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-012-9679-z

Keywords

Navigation