Skip to main content
Log in

Temporal Non-locality

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this article I investigate several possibilities to define the concept of “temporal non-locality” within the standard framework of quantum theory. In particular, I analyze the notions of “temporally non-local states”, “temporally non-local events” and “temporally non-local observables”. The idea of temporally non-local events is already inherent in the standard formalism of quantum mechanics, and Basil Hiley recently defined an operator in order to measure the degree of such a temporal non-locality. The concept of temporally non-local states enters as soon as “clock-representing states” are introduced in the context of special and general relativity. It is discussed in which way temporally non-local measurements may find an interesting application for experiments which test temporal versions of Bell inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Extending the mathematical framework of quantum theory or giving up fundamental requirements about the nature of observables let to many attempts to formulate time operators, see e.g. [10, 11, 24, 38, 44] and references therein. In this article I will not follow these technical approaches but rather take up a more conceptual viewpoint.

References

  1. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988)

    Article  ADS  Google Scholar 

  2. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  3. Atmanspacher, H.: Categoreal and acategoreal representation of knowledge. Cogn. Syst. 3, 259–288 (1992)

    Google Scholar 

  4. Atmanspacher, H., Amann, A.: Positive-operator-valued-measures and projection-valued measures of noncommutative time operators. Int. J. Theor. Phys. 37, 629–650 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Atmanspacher, H., Römer, H., Walach, H.: Weak quantum theory: complementarity and entanglement in physics and beyond. Found. Phys. 32, 379–406 (2002)

    Article  MathSciNet  Google Scholar 

  6. Atmanspacher, H., Filk, T., Römer, H.: Quantum Zeno features of bistable perception. Biol. Cybern. 90, 33–40 (2004)

    Article  MATH  Google Scholar 

  7. Atmanspacher, H., Filk, T., Römer, H.: Weak quantum theory: formal framework and selected applications. In: Adenier, G., et al. (eds.) Quantum Theory: Reconsideration of Foundations—3, pp. 34–46. American Institute of Physics, New York (2006)

    Google Scholar 

  8. Atmanspacher, H., Bach, M., Filk, T., Kornmeier, J., Römer, H.: Cognitive time scales in a Necker-Zeno model for bistable perception. Open Cybern. Syst. J. 2, 234–251 (2008)

    Article  MathSciNet  Google Scholar 

  9. Atmanspacher, H., Filk, T.: A proposed test of temporal nonlocality in bistable perception. J. Math. Psychol. 54, 314–321 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bauer, M.: A time operator in quantum mechanics. Ann. Phys. 150(1), 1–21 (1983)

    Article  ADS  MATH  Google Scholar 

  11. Bauer, M.: A dynamical time operator in relativistic quantum mechanics. arXiv:0908.2789

  12. Bell, J.S.: On the problem of hidden variables in quantum theory. Rev. Mod. Phys. 38, 447–452 (1966)

    Article  ADS  MATH  Google Scholar 

  13. Blanchard, Ph., Jadczyk, A.: Time and events. Int. J. Theoret. Phys. 37 (1998)

  14. Bohr, N.: Diskussion mit Einstein über erkenntnistheoretische Probleme in der Atomphysik. In: Atomphysik und menschliche Erkenntnis. Vieweg & Sohn, Braunschweig/Wiesbaden (1985)

    Google Scholar 

  15. Borsellino, A., de Marco, A., Alazetta, A., Rinesi, S., Bartolini, R.: Reversal time distribution in the perception of visual ambiguous stimuli. Kybernetik 10, 139–144 (1972)

    Article  Google Scholar 

  16. Brascamp, J.W., van Ee, R., Pestman, W.R., van den Berg, A.V.: Distributions of alternation rates in various forms of bistable perception. J. Vis. 5, 287–298 (2005)

    Article  Google Scholar 

  17. Dowker, F., Kent, A.: Properties of consistent histories. Phys. Rev. Lett. 75, 3038–3041 (1995)

    Article  ADS  Google Scholar 

  18. Eddington, A.S.: Space, Time and Gravitation. Cambridge University Press, Cambridge (1920)

    Google Scholar 

  19. Feil, D., Atmanspacher, H.: Acategorial states in a representational theory of mental processes. J. Conscious. Stud. 17(5/6), 72–101 (2010)

    Google Scholar 

  20. Filk, T.: Non-classical correlations in bistable perception? Axiomathes 21(2), 221–232 (2011)

    Article  Google Scholar 

  21. Filk, T., von Müller, A.: Quantum physics and consciousness: the quest for a common, modified conceptual foundation. Mind Matter 7(1), 59–79 (2009)

    Google Scholar 

  22. Filk, T., von Müller, A.: A categorical framework for quantum theory. Ann. Phys. 522, 783–801 (2010)

    Article  MathSciNet  Google Scholar 

  23. Gebser, J.: The Ever-Present Origin. Ohio University Press, Columbus (1986)

    Google Scholar 

  24. Goto, T., Yamaguchi, K., Sudo, N.: On the time operator in quantum mechanics. Prog. Theor. Phys. 66(5), 1525–1538 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36, 219–272 (1984)

    Article  ADS  MATH  Google Scholar 

  26. Isham, C.: Quantum logic and the histories approach to quantum theory. J. Math. Phys. 35, 2157–2185 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Haag, R.: Objects, events and localization. In: Blanchard, P., Jadczyk, A. (eds.) Quantum Future, pp. 58–79. Springer, Berlin (1999)

    Google Scholar 

  28. Haag, R.: Quantum theory and the division of the world. Mind Matter 2(2), 53–66 (2004)

    Google Scholar 

  29. Hiley, B.: Towards a dynamics of moments: the role of algebraic deformation and inequivalent vacuum states. In: Bowden, K.G. (ed.) Correlations. Proc. ANPA, vol. 23, pp. 104–134 (2001)

    Google Scholar 

  30. Hiley, B.: Time from an algebraic theory of moments. Talk presented at the Parmenides Workshop “The Forgotten Present”, April 29th–May 1st, 2010

  31. Isham, C., Linden, N.: Continuous histories and the history group in generalised quantum theory. J. Math. Phys. 36, 5392–5408 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Jammer, M.: The Philosophy of Quantum Mechanics: The Interpretations of Quantum Mechanics in Historical Perspective. Wiley, New York (1974)

    Google Scholar 

  33. Kumar, M.: Quantum—Einstein, Bohr and the Great Debate About the Nature of Reality. Ikon Books (2008)

  34. Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev. Lett. 54, 857–860 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  35. Mahler, G.: Temporal Bell inequalities: a journey to the limits of “Consistent Histories”. In: Atmanspacher, H., Dalenoort, G. (eds.) Inside Versus Outside. Endo- and Exo-Concepts of Observation and Knowledge in Physics, Philosophy and Cognitive Science, pp. 195–205. Springer, Berlin (1994)

    Chapter  Google Scholar 

  36. Misra, B., Sudarshan, E.C.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756–763 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  37. Gustafson, K.: A Zeno story. Quant. Comput. Comput. 35(2), 35–55 (2003)

    MathSciNet  Google Scholar 

  38. Olkhovsky, V.S., Recami, E., Gerasimchuk, A.J.: Time operator in quantum mechanics. Nuovo Cimento 22A(2), 263–278 (1974)

    MathSciNet  ADS  Google Scholar 

  39. Omnés, R.: From Hilbert space to common sense: a synthesis of recent progress in the interpretation of quantum mechanics. Ann. Phys. 201, 354 (1990)

    Article  ADS  Google Scholar 

  40. Omnés, R.: Consistent interpretations of quantum mechanics. Rev. Mod. Phys. 64, 339 (1992)

    Article  ADS  Google Scholar 

  41. Pais, A.: ‘Subtle is the Lord’ … The Science and the Life of Albert Einstein. Oxford University Press, New York (1982)

    Google Scholar 

  42. Pöppel, E.: A hierarchical model of temporal perception. Trends Cogn. Sci. 1, 56–61 (1997)

    Article  Google Scholar 

  43. Savvidou, K.: The action operator for continuous-time histories. J. Math. Phys. 40, 5657 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Wang, Z.Y., Xiong, C.D.: How to introduce time operator. Ann. Phys. 322, 2304–2314 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Weyl, H.: Space-Time-Matter. Constable, London (1922)

    MATH  Google Scholar 

  46. Wilde, M.M., Mizel, A.: Addressing the clumsiness loophole in a Leggett-Garg test of macrorealism. Found. Phys. 42(2), 256–265 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Filk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filk, T. Temporal Non-locality. Found Phys 43, 533–547 (2013). https://doi.org/10.1007/s10701-012-9671-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-012-9671-7

Keywords

Navigation