Skip to main content
Log in

Born’s Reciprocal Gravity in Curved Phase-Spaces and the Cosmological Constant

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The main features of how to build a Born’s Reciprocal Gravitational theory in curved phase-spaces are developed. By recurring to the nonlinear connection formalism of Finsler geometry a generalized gravitational action in the 8D cotangent space (curved phase space) can be constructed involving sums of 5 distinct types of torsion squared terms and 2 distinct curvature scalars \({\mathcal{R}}, {\mathcal{S}}\) which are associated with the curvature in the horizontal and vertical spaces, respectively. A Kaluza-Klein-like approach to the construction of the curvature of the 8D cotangent space and based on the (torsionless) Levi-Civita connection is provided that yields the observed value of the cosmological constant and the Brans-Dicke-Jordan Gravity action in 4D as two special cases. It is found that the geometry of the momentum space can be linked to the observed value of the cosmological constant when the curvature in \(\mathit{momentum}\) space is very large, namely the small size of P is of the order of \(( 1/R_{\mathit{Hubble}})\). Finally we develop a Born’s reciprocal complex gravitational theory as a local gauge theory in 8D of the \(\mathit{deformed}\) Quaplectic group that is given by the semi-direct product of U(1,3) with the \(\mathit{deformed}\) (noncommutative) Weyl-Heisenberg group involving four \(\mathit{noncommutative}\) coordinates and momenta. The metric is complex with symmetric real components and antisymmetric imaginary ones. An action in 8D involving 2 curvature scalars and torsion squared terms is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. These commutators \(\mathit{differ}\) from those in [36] because he chose all generators X,P,M,L to be anti-Hermitian so there are no i terms in the commutators in the r.h.s. of (4.7b) and there are also sign changes.

References

  1. Born, M.: Proc. R. Soc. A 165, 291 (1938)

    Article  ADS  Google Scholar 

  2. Born, M.: Rev. Mod. Phys. 21, 463 (1949)

    Article  ADS  MATH  Google Scholar 

  3. Low, S.: J. Phys. A, Math. Gen. 35, 5711 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Low, S.: Nuovo Cimento B 108, 841 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  5. Low, S.: Found. Phys. 36, 1036 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  6. Low, S.: J. Math. Phys. 38, 2197 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Brandt, H.: Contemp. Math. 196, 273 (1996)

    Article  Google Scholar 

  8. Brandt, H.: Found. Phys. Lett. 4, 523 (1991)

    Article  MathSciNet  Google Scholar 

  9. Brandt, H.: Chaos Solitons Fractals 10, 2–3 (1999) 267

    Article  Google Scholar 

  10. Caianiello, E.: Lett. Nuovo Cimento 32, 65 (1981)

    Article  MathSciNet  Google Scholar 

  11. Castro, C.: Int. J. Mod. Phys. A 26(21), 3653 (2011)

    Article  ADS  Google Scholar 

  12. Cho, Y., Soh, K., Park, Q., Yoon, J.: Phys. Lett. B 286, 251 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  13. Yoon, J.: Phys. Lett. B 308, 240 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  14. Yoon, J.: Phys. Lett. A 292, 166 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Yoon, J.: Class. Quantum Gravity 18, 1999 (1863)

    Google Scholar 

  16. Miron, R., Hrimiuc, D., Shimada, H., Sabau, S.: The Geometry of Hamilton and Lagrange Spaces. Kluwer Academic, Dordrecht, Boston (2001)

    MATH  Google Scholar 

  17. Miron, R., Anastasiei, M.: The Geometry of Lagrange Spaces: Theory and Applications. Kluwer Academic, Dordrecht (1994)

    Book  MATH  Google Scholar 

  18. Vacaru, S.: Finsler-Lagrange geometries and standard theories in physics: new methods in Einstein and string gravity, arXiv:hep-th/0707.1524

  19. Vacaru, S.: Decoupling of EYMH equations, off-diagonal solutions and black ellipsoids and solitons, arxiv:1108.2022

  20. Vacaru, S., Tintareanu-Mircea, O.: Nucl. Phys. B 626, 239 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Vacaru, S., Stavrinos, P.: Spinors and Space-Time Anisotropy. Athens University Press, Athens (2012). arXiv:gr-qc/0112028

    Google Scholar 

  22. Anastesiei, M., Vacaru, S.: J. Math. Phys. 50, 013510 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  23. Nakahara, M.: Geometry, Topology and Physics. Institute of Physics, Publishing, Bristol (1990)

    Book  MATH  Google Scholar 

  24. Moffat, J.W.: Quantum gravity momentum representation and maximum invariant energy, arXiv:gr-qc/0401117

  25. Coquereaux, R., Jadczyk, A.: Rev. Math. Phys. 2(1), 1 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Born, M., Infeld, L.: Proc. R. Soc. Lond., Ser. A 144, 425 (1934)

    Article  ADS  Google Scholar 

  27. Prieto-Martinez, P., Roman-Roy, N.: Lagrangian-Hamiltonian unified formalism for autonomous higher-order dynamical systems, arXiv:1106.3261

  28. Castro, C.: Phys. Lett. B 668, 442 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  29. Yang, C.N.: Phys. Rev. 72, 874 (1947)

    Article  ADS  MATH  Google Scholar 

  30. Yang, C.N.: In: Proceedings of the International Conference on Elementary Particles, Kyoto, pp. 322–323 (1965)

    Google Scholar 

  31. Einstein, A.: Ann. Math. 46, 578 (1945)

    Article  MATH  Google Scholar 

  32. Einstein, A., Strauss, E.: Ann. Math. 47, 731 (1946)

    Article  MATH  Google Scholar 

  33. Moffat, J.: J. Math. Phys.. 36(10), 5897 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Moffat, J., Boal, D.: Phys. Rev. D 11, 1375 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  35. Moffat, J.W.: Phys. Lett. B 491, 345 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Damour, T., Deser, S., McCarthy, J.: Phys. Rev. D 47, 1541 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  37. Chamseddine, A.: Commun. Math. Phys. 218, 283 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Chamseddine, A.: Gravity in complex Hermitian spacetime, arXiv:hep-th/0610099

  39. Achieri, P., Dimitrijevic, M., Meyer, F., Wess, J.: Noncommutative geometry and gravity, arXiv:hep-th/0510059 and references therein

Download references

Acknowledgement

We thank M. Bowers for very kind assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, C. Born’s Reciprocal Gravity in Curved Phase-Spaces and the Cosmological Constant. Found Phys 42, 1031–1055 (2012). https://doi.org/10.1007/s10701-012-9645-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-012-9645-9

Keywords

Navigation