Skip to main content
Log in

Which Fine-Tuning Arguments Are Fine?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Fine-tuning arguments are a frequent find in the literature on quantum field theory. They are based on naturalness—an aesthetic criterion that was given a precise definition in the debates on the Higgs mechanism. We follow the history of such definitions and of their application at the scale of electroweak symmetry breaking. They give rise to a special interpretation of probability, which we call Gedankenfrequency. Finally, we show that the argument from naturalness has been extended to comparing different models of the physics beyond the Standard Model and that naturalness in this case can at best be understood a socio-historic heuristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Models with large extra dimensions, where the scale of gravity is different from 1019 GeV [6], are an exception.

References

  1. Abe, H., Kobayashi, T., Omura, Y.: Relaxed fine-tuning in models with nonuniversal gaugino masses. Phys. Rev. D 76, 015002 (2001)

    Article  ADS  Google Scholar 

  2. Allanach, B.C.: Naturalness priors and fits to the constrained minimal supersymmetric standard model. Phys. Lett. B 635, 123–130 (2006)

    Article  ADS  Google Scholar 

  3. Anderson, G.W., Castaño, D.J.: Measures of fine tuning. Phys. Lett. B 347, 300–308 (1995)

    Article  ADS  Google Scholar 

  4. Anderson, G.W., Castaño, D.J.: Challenging weak-scale supersymmetry at colliders. Phys. Rev. D 53, 2403–2410 (1996)

    Article  ADS  Google Scholar 

  5. Anderson, G.W., Castaño, D.J., Riotto, A.: Naturalness lowers the upper bound on the lightest Higgs boson mass in supersymmetry. Phys. Rev. D 55, 2950–2954 (1997)

    Article  ADS  Google Scholar 

  6. Arkadi-Hamed, N., Dimopoulos, S., Dvali, G.: The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263–272 (1998). arXiv:hep-ph/9803315

    Article  ADS  Google Scholar 

  7. Athron, P., Miller, D.J.: New measure of fine tuning. Phys. Rev. D 76, 075010 (2007)

    Article  ADS  Google Scholar 

  8. Baer, H., Barger, V., Shaughnessy, G., Summy, H., Wang, L.-T.: Precision gluino mass at the LHC in SUSY models with decoupled scalars. arXiv:hep-ph/0703289

  9. Barate, R., et al.: Search for the standard model Higgs boson at LEP. Phys. Lett. B 565, 61 (2003). LEP Working Group for Higgs boson searches

    Article  Google Scholar 

  10. Barbieri, R., Giudice, G.F.: Upper bounds on supersymmetric particle masses. Nucl. Phys. B 306, 63–76 (1988)

    Article  ADS  Google Scholar 

  11. Barbieri, R., Strumia, A.: About the fine-tuning price of LEP. Phys. Lett. B 433, 63–66 (1998)

    Article  ADS  Google Scholar 

  12. Bilaniuk, O.M.P., Sudarshan, E.C.G.: Particles beyond the light barrier. Phys. Today 22, 43–51 (1969). This is the first known reference in press. Attribution to Gell-Mann is however indisputable

    Article  Google Scholar 

  13. Binétruy, P., Kane, G.L., Nelson, B.D., Wang, L.-T., Wang, T.T.: Relating incomplete data and incomplete theory. Phys. Rev. D 70, 095006 (2004). arXiv:hep-ph/0312248

    Article  ADS  Google Scholar 

  14. Cabrera, M.E., Casas, J.A., Ruiz de Austri, R.: Bayesian approach and naturalness in MSSM analyses for the LHC. arXiv:0812.0536

  15. Carr, B. (ed.): Universe or Multiverse? Cambridge University Press, Cambridge (2007)

    Google Scholar 

  16. Casas, J.A., Espinoza, J.R., Hidalgo, I.: Implications for new physics from fine-tuning arguments. 1. Application to SUSY and seesaw cases. J. High Energy Phys. 11, 057 (2004)

    Article  ADS  Google Scholar 

  17. Casas, J.A., Espinoza, J.R., Hidalgo, I.: The MSSM fine tuning problem: a way out. J. High Energy Phys. 01, 008 (2004)

    Article  ADS  Google Scholar 

  18. Casas, J.A., Espinoza, J.R., Hidalgo, I.: Implications for new physics from fine-tuning arguments. 2. Little Higgs models. J. High Energy Phys. 03, 038 (2005)

    Article  ADS  Google Scholar 

  19. Casas, J.A., Espinoza, J.R., Hidalgo, I.: Expectations for the LHC from naturalness: modified vs. SM Higgs sector. Nucl. Phys. B 777, 226–252 (2007)

    Article  ADS  Google Scholar 

  20. Chan, K.L., Chattopadhyay, U., Nath, P.: Naturalness, weak scale supersymmetry, and the prospect for the observation of supersymmetry at the Fermilab Tevatron and at the CERN LHC. Phys. Rev. D 58, 096004 (1998)

    Article  ADS  Google Scholar 

  21. Chandrasekhar, S.: Truth and Beauty. Chicago University Press, Chicago (1987)

    Google Scholar 

  22. Chankowski, P.H., Ellis, J., Pokorski, S.: The fine-tuning price of LEP. Phys. Lett. B 423, 327–336 (1998)

    Article  ADS  Google Scholar 

  23. Cheng, H.C.: Little Higgs, non-standard Higgs, no Higgs and all that. arXiv:0710.3407

  24. Ciafaloni, P., Strumia, A.: Naturalness upper bounds on gauge-mediated soft terms. Nucl. Phys. B 494, 41–53 (1997)

    Article  ADS  Google Scholar 

  25. Darrow, K.: Contemporary advances in physics, XXVI. Bell Syst. Tech. J. 12, 288–330 (1933). Quoted in [39, p. 267]

    MATH  Google Scholar 

  26. de Carlos, B., Casas, J.A.: One-loop analysis of the electroweak breaking in supersymmetric models and the fine-tuning problem. Phys. Lett. B 309, 320–328 (1993)

    Article  ADS  Google Scholar 

  27. Dirac, P.: Quantised singularities in the electromagnetic field. Proc. R. Soc. Lond. A 133, 60–72 (1931). Quoted in [39, p. 208]

    Article  ADS  Google Scholar 

  28. Dirac, P.: The relation between mathematics and physics. Proc. R. Soc. Edinb. 59, 122–129 (1939). Quoted in [39, p. 277]

    MATH  Google Scholar 

  29. Donoghue, J.F.: The fine-tuning problems of particle physics and anthropic mechanisms. In: [15], Chap. 15, p. 231

  30. Dyson, F.: Our biotech future. The New York Review of Books 54(12) (19 July 2007)

  31. Einstein, A.: Letter to F. Klein, 12 December 1917. Quoted in [43, p. 325]

  32. Ellis, J.R., Enquist, K., Nanopoulos, D.V., Zwirner, F.: Observables in low-energy superstring models. Mod. Phys. Lett. A 1, 57–69 (1986)

    Article  ADS  Google Scholar 

  33. The Tevatron Electroweak Working Group for the CDF and D0 Collaborations. Combination of CDF and D0 results on the mass of the top quark. arXiv:0803.1683

  34. Giudice, G.F.: Naturally speaking: the naturalness criterion and physics and LHC. arXiv:0801.2562

  35. Giudice, G.F.: Theories for the Fermi scale. arXiv:0710.3294

  36. Giusti, L., Romanino, A., Strumia, A.: Natural ranges of supersymmetric signals. Nucl. Phys. B 550, 3–31 (1999)

    Article  ADS  Google Scholar 

  37. LEP Electroweak Working Group: http://lepewwg.web.cern.ch

  38. Iliopoulos, J.: Towards a unified theory of elementary particle interactions. In: Einstein Symposium, Berlin 1979. Lecture Notes in Physics, vol. 100, p. 89. Springer, Berlin (1980)

    Chapter  Google Scholar 

  39. Kragh, H.: Dirac: A Scientific Biography. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  40. Lewis, D.: On the Plurality of Worlds. Blackwell, Oxford (1986)

    Google Scholar 

  41. McGrew, T., McGrew, L., Vestrup, E.: Probabilities and the fine-tuning argument: a skeptical view. In: Manson, N.A. (ed.) God and Design: The Teleological Argument and Modern Science, p. 200. Routledge, London (2003). Chap. 10

    Chapter  Google Scholar 

  42. Nickerson, R.: Cognition and Chance: The Psychology of Probabilistic Reasoning. Routledge, London (2004)

    Google Scholar 

  43. Pais, A.: ‘Subtle is the Lord…’: The Science and the Life of Albert Einstein. Oxford University Press, London (1982)

    Google Scholar 

  44. Pauli, W.: Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., vol. 2. Springer, Berlin (1985)

    Google Scholar 

  45. Peierls, R.: Letter to W. Pauli, 17 July 1933. Quoted in [44, p. 197]

  46. Polkinghorne, J.: Faith, Science and Understanding. Yale University Press, New Haven (2000)

    Google Scholar 

  47. Quine, W.V.O.: Pursuit of Truth. Harvard University Press, Cambridge (1992). Revised edition

    Google Scholar 

  48. Rattazzi, R.: Physics beyond the Standard Model. arXiv:hep-ph/0607058

  49. Ross, G.G., Roberts, R.G.: Minimal supersymmetric unification predictions. Nucl. Phys. B 377, 571–592 (1992)

    Article  ADS  Google Scholar 

  50. Schuster, P.C., Toro, N.: Persistent fine-tuning in supersymmetry and the NMSSM. arXiv:hep-ph/0512189

  51. Susskind, L.: Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory. Phys. Rev. D 20, 2619 (1979)

    Article  ADS  Google Scholar 

  52. ’t Hooft, G.: Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. In: ’t Hooft, G., et al. (eds.) Recent Developments in Gauge Theories, Proceedings of 1979 Cargèse Institute, p. 135. Plenum, New York (1980)

    Google Scholar 

  53. Weinberg, S.: The First Three Minutes. A. Deutsch, London (1977)

    Google Scholar 

  54. Wilson, K.G.: The renormalization group and strong interactions. Phys. Rev. D 3, 1818 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  55. Wilson, K.G.: The origins of lattice gauge theory. Nucl. Phys. Proc. Suppl. 140, 3 (2005)

    Article  ADS  Google Scholar 

  56. Witten, E.: Dynamical breaking of supersymmetry. Nucl. Phys. B 185, 513–554 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Grinbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinbaum, A. Which Fine-Tuning Arguments Are Fine?. Found Phys 42, 615–631 (2012). https://doi.org/10.1007/s10701-012-9629-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-012-9629-9

Keywords

Navigation