Advertisement

Foundations of Physics

, Volume 41, Issue 3, pp 580–591 | Cite as

Is the Contextuality Loophole Fatal for the Derivation of Bell Inequalities?

  • T. M. NieuwenhuizenEmail author
Open Access
Article

Abstract

It is explained on a physical basis how absence of contextuality allows Bell inequalities to be violated, without bringing an implication on locality or realism. Hereto we connect first to the local realistic theory Stochastic Electrodynamics, and then put the argument more broadly. Thus even if Bell Inequality Violation is demonstrated beyond reasonable doubt, it will have no say on local realism, because absence of contextuality prevents the Bell inequalities to be derived from local realistic models.

Keywords

Bell inequalities Loopholes Contextuality Stochastic electrodynamics 

References

  1. 1.
    Allahverdyan, A.E., Balian, R., Nieuwenhuizen, Th.M.: Europhys. Lett. 61, 452 (2003) CrossRefADSGoogle Scholar
  2. 2.
    de la Peña, L., Cetto, A.M.: The Quantum Dice: An Introduction to Stochastic Electrodynamics. Kluwer, Dordrecht (1996) Google Scholar
  3. 3.
    de la Peña, L., Cetto, A.M.: In: Adenier, G., Khrennikov, A.Y., Nieuwenhuizen, T.M. (eds.) Quantum Theory: Reconsideration of Foundations-3. AIP Conference Proceedings, vol. 810, p. 131. AIP, Melville (2006) Google Scholar
  4. 4.
    ’t Hooft, G.: arXiv:0908.3408
  5. 5.
    Nieuwenhuizen, T.M.: In: Adenier, G., Khrennikov, A.Y., Nieuwenhuizen, T.M. (eds.) Quantum Theory: Reconsideration of Foundations-3. AIP Conference Proceedings, vol. 810, p. 198. AIP, Melville (2006) Google Scholar
  6. 6.
    Couder, Y., Fort, E.: Phys. Rev. Lett. 97, 154101 (2006) CrossRefADSGoogle Scholar
  7. 7.
    Eddi, A., Fort, E., Moisy, F., Couder, Y.: Phys. Rev. Lett. 102, 240401 (2009) CrossRefADSGoogle Scholar
  8. 8.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987) Google Scholar
  9. 9.
    Khrennikov, A.Y.: arXiv:0709.3909
  10. 10.
    Cetto, A.M., Brody, T., de la Peña, L.: Lett. Nuovo Cimento 5, 177 (1997) Google Scholar
  11. 11.
    Accardi, L.: Phys. Rep. 77, 169 (1981) CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Fine, A.: Phys. Rev. Lett. 48, 291–295 (1982) CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Pitowsky, I.: Phys. Rev. Lett. 48, 1299–1302 (1982) CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Rastal, P.: Found. Phys. 13, 555–575 (1983) CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Kupczynski, M.: Phys. Lett. A 116, 417–422 (1986) CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Garola, C., Solombrino, L.: Found. Phys. 26, 1121 (1996) CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Khrennikov, A.Yu.: Found. Phys. 32, 1159–1174 (2002) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Volovich, I.V.: In: Khrennikov, A.Y. (ed.) Proc. Conf. Quantum Theory: Reconsideration of Foundations. Ser. Math. Modeling, vol. 2, p. 423. Växjö University Press, Växjö (2002) Google Scholar
  19. 19.
    Hess, K., Philipp, W.: In: Khrennikov, A.Y. (ed.) Proc. Conf. Foundations of Probability and Physics-3. AIP Conference Proceedings, vol. 750, pp. 150–155. AIP, New York (2005) Google Scholar
  20. 20.
    Garola, C., Sozzo, S.: quant-ph/0703260 (2007)
  21. 21.
    Zhao, S., de Raedt, H., Michielsen, K.: Found. Phys. 38, 322 (2008) CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Accardi, L., Imafuku, K., Regoli, M.: Infin. Dimens. Anal. Quantum Probab. Relat. Top. 51, 1 (2002) CrossRefMathSciNetGoogle Scholar
  23. 23.
    Adenier, G.: AIP Conference Proceedings 1101 (2009) Google Scholar
  24. 24.
    Adenier, G.: J. Phys. B 40, 131–141 (2007) CrossRefADSGoogle Scholar
  25. 25.
    Adenier, G.: Am. J. Phys. 76, 147 (2008) CrossRefADSGoogle Scholar
  26. 26.
    Hess, K., Michielsen, K., De Raedt, H.: Europhys. Lett. 87, 60007 (2009) CrossRefADSGoogle Scholar
  27. 27.
    Khrennikov, A.Y.: Interpretations of Probability, 2nd edn. de Gruyter, Berlin (2009) zbMATHCrossRefGoogle Scholar
  28. 28.
    Khrennikov, A.Y.: Contextual Approach to Quantum Formalism. Springer, Berlin (2009) zbMATHCrossRefGoogle Scholar
  29. 29.
    Allahverdyan, A.E., Khrennikov, A., Nieuwenhuizen, T.M.: Phys. Rev. A 72, 032102 (2005) CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Phys. Rev. Lett. 49, 1804 (1969) Google Scholar
  31. 31.
    Freedman, S.J., Clauser, J.F.: Phys. Rev. Lett. 28, 938 (1972) CrossRefADSGoogle Scholar
  32. 32.
    Aspect, A., Dalibard, J., Roger, G.: Phys. Rev. Lett. 49, 1804 (1982) CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Vorobev, N.N.: Theory Probab. Appl. 7, 147–162 (1962) CrossRefGoogle Scholar
  34. 34.
    Rohe, M.A., Kielpinski, D., Meyer, V., Sackett, C.A., Itano, W.M., Monroe, C., Wineland, D.J.: Nature 409, 791 (2001) CrossRefADSGoogle Scholar
  35. 35.
    Weihs, G., Jennewein, T., Simon, C., Weinfurther, H., Zeilinger, A.: Phys. Rev. Lett. 81, 5039 (1998) zbMATHCrossRefMathSciNetADSGoogle Scholar
  36. 36.
    Hasegaga, Y., Loidl, R., Barudek, G., Baron, M., Rauch, H.: Nature 425, 45 (2003) CrossRefADSGoogle Scholar
  37. 37.
    Larsson, J.A., Gill, R.D.: Europhys. Lett. 67, 707 (2004) CrossRefADSGoogle Scholar
  38. 38.
    Adenier, G.: Local realist approach and numerical simulations of nonclassical experiments in quantum mechanics. Thesis, Växjö University, November 2008 Google Scholar
  39. 39.
    Santos, E.: Found. Phys. 34, 1643 (2004) zbMATHCrossRefMathSciNetADSGoogle Scholar
  40. 40.
    Mermin, N.D.: Am. J. Phys. 49, 940 (1981) CrossRefADSGoogle Scholar
  41. 41.
    Adenier, G.: Am. J. Phys. 76, 147 (2008) CrossRefADSGoogle Scholar
  42. 42.
    Gröblacher, S., Paterek, T., Kaltenbaek, R., Brukner, C., Zukowski, M., Aspelmeyer, M., Zeilinger, A.: Nature 446, 871 (2007) CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsAmsterdamThe Netherlands

Personalised recommendations