Foundations of Physics

, Volume 41, Issue 1, pp 88–98 | Cite as

Tensor Lagrangians, Lagrangians Equivalent to the Hamilton-Jacobi Equation and Relativistic Dynamics

  • Alexander GerstenEmail author


We deal with Lagrangians which are not the standard scalar ones. We present a short review of tensor Lagrangians, which generate massless free fields and the Dirac field, as well as vector and pseudovector Lagrangians for the electric and magnetic fields of Maxwell’s equations with sources. We introduce and analyse Lagrangians which are equivalent to the Hamilton-Jacobi equation and recast them to relativistic equations.


Scalar Lagrangians Tensor Lagrangians Hamilton-Jacobi equation Relativistic dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gersten, A.: Maxwell equations as the one-photon quantum equation. Found. Phys. Lett. 12, 291–298 (1999) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Gersten, A.: Maxwell equations—the one-photon quantum equation. Found. Phys. 13, 1211–1231 (2001) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bialynicki-Birula, I.: Photon wave function. Prog. Opt. 36, 245 (1996) CrossRefGoogle Scholar
  4. 4.
    Esposito, S.: Found. Phys. 28, 231–244 (1999) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Gersten, A.: Quantum equations for massless particles of any spin. Found. Phys. Lett. 13, 185–192 (2000) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Fushchich, V.I., Nikitin, A.G.: Symmetries of Maxwell’s Equations. Reidel, Dordrecht (1987) zbMATHCrossRefGoogle Scholar
  7. 7.
    Gersten, A.: Conserved currents of the Maxwell equations with electric and magnetic sources. Ann. Fond. Louis de Broglie 21, 67–79 (1996) Google Scholar
  8. 8.
    Morgan, T.A., Joseph, D.W.: Tensor Lagrangians and generalized conservation laws for free fields. Nuovo Cimento 39, 494–503 (1965) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Sudbery, A.: A vector Lagrangian for the electromagnetic field. J. Phys. A, Math. Gen. 19, L33–L36 (1986) CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Fushchych, W.I., Krivskiy, I.Yu., Simulik, V.M.: On vector and pseudovector Lagrangians for electromagnetic field. Nuovo Cimento B 103, 423–429 (1989). Also in W.I. Fushchych, Scientific Works 3, 506–510 (2001) CrossRefADSGoogle Scholar
  11. 11.
    Gersten, A.: Field approach to classical mechanics. Found. Phys. 35, 1433–1443 (2005) zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, Reading (1980) zbMATHGoogle Scholar
  13. 13.
    Pauli, W., Fierz, M.: Proc. R. Soc. Lond. A 73, 211 (1939) MathSciNetGoogle Scholar
  14. 14.
    Corson, E.M.: Introduction to Tensors, Spinors and Relativistic Wave-Equations. Hafner, New York (1953) zbMATHGoogle Scholar
  15. 15.
    Barut, A.O.: Electrodynamics and Classical Theory of Fields and Particles. Dover, New York (1980) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PhysicsBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations