Skip to main content
Log in

Branch Dependence in the “Consistent Histories” Approach to Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

In the consistent histories formalism one specifies a family of histories as an exhaustive set of pairwise exclusive descriptions of the dynamics of a quantum system. We define branching families of histories, which strike a middle ground between the two available mathematically precise definitions of families of histories, viz., product families and Isham’s history projector operator formalism. The former are too narrow for applications, and the latter’s generality comes at a certain cost, barring an intuitive reading of the “histories”. Branching families retain the intuitiveness of product families, they allow for the interpretation of a history’s weight as a probability, and they allow one to distinguish two kinds of coarse-graining, leading to reconsidering the motivation for the consistency condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aspect A., Dalibard J., Roger G., (1982). “Experimental test of Bell’s inequalities using time-varying analyzers”. Phys. Rev. Lett. 49: 1804–1807

    Article  ADS  MathSciNet  Google Scholar 

  • Belnap N., (1992). “Branching space-time”. Synthese 92, 385–434

    Article  MATH  MathSciNet  Google Scholar 

  • Belnap N., (2005). “A theory of causation: Causae causantes (originating causes) as inus conditions in branching space-times”. Brit. J. Phil. Sci. 56, 221–253

    Article  MATH  MathSciNet  Google Scholar 

  • Belnap N., Perloff M., Xu M., (2001). Facing the Future. Oxford University Press, Oxford

    Google Scholar 

  • Dowker F., Kent A., (1996). “On the consistent histories approach to quantum mechanics”. J. Stat. Phys. 82: 1575–1646

    Article  MATH  MathSciNet  Google Scholar 

  • M. Gell-Mann and Hartle J., “Quantum mechanics in the light of quantum cosmology,” in Complexity, Entropy and the Physics of Information, W.H. Zurek, ed. 425–458 (Addison-Wesley, Reading, MA, 1990).

  • Gell-Mann M., Hartle J., (1993). “Classical equations for quantum systems”. Phys. Rev. D 47: 3345–3382

    Article  ADS  MathSciNet  Google Scholar 

  • Griffiths R.B., (1984). “Consistent histories and the interpretation of quantum mechanics”. J. Stat. Phys. 36, 219–272

    Article  MATH  Google Scholar 

  • Griffiths R.B., (1998). “Choice of consistent family, and quantum incompatibility”. Phys. Rev. A 57: 1604–1618

    Article  ADS  Google Scholar 

  • Griffiths R.B., (2003). Consistent Quantum Theory. Cambridge University Press, Cambridge

    Google Scholar 

  • Isham C.J., (1994). “Quantum logic and the histories approach to quantum theory”. J. Math. Phys. 35: 2157–2185

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Isham C.J., Linden N., (1994). “Quantum temporal logic and decoherence functionals in the histories approach to generalized quantum theory”. J. Math. Phys. 35: 5452–5476

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Isham C.J., Linden N., Savvidou K., Schreckenberg S., (1998). “Continuous time and consistent histories”. J. Math. Phys. 39, 1818–1834

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Kent A., (1998). “Quantum histories”. Physica Scripta T76: 78–84

    Article  ADS  MathSciNet  Google Scholar 

  • Kent A., “Quantum histories and their implications,” In Relativistic Quantum Measurement and Decoherence, Springer Lecture Notes in Physics, 559, F. Petruccione ed. 93–115. (Springer, Heidelberg, 2000).

  • Müller T., (2005). “Probability and causation. A branching space-times analysis”. Brit. J. Phil. Sci. 56, 487–520

    Article  MATH  Google Scholar 

  • T. Müller, “Relativistic quantum histories in branching space-times,” in preparation (2007).

  • Nisticò G., (1999). “Consistency conditions for probabilities of quantum histories”. Found. Phys. 29, 221–229

    Article  MathSciNet  Google Scholar 

  • Omnès R., (1994). The Interpretation of Quantum Mechanics. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Peres A., (2000). “Classical interventions in quantum systems I: The measuring process”. Phys. Rev. A 61: 022116

    Article  ADS  MathSciNet  Google Scholar 

  • Prior A.N., (1967). Past, Present and Future. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Xu M., (1997). “Causation in branching time (I): Transitions, events and causes”. Synthese 112, 137–192

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, T. Branch Dependence in the “Consistent Histories” Approach to Quantum Mechanics. Found Phys 37, 253–276 (2007). https://doi.org/10.1007/s10701-006-9100-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-006-9100-x

Keywords

PACS Numbers

Navigation