Abrahamsen, A., & Bechtel, W. (2015). Diagrams as tools for scientific reasoning. Review of Philosophy and Psychology,6(1), 117–131. https://doi.org/10.1007/s13164-014-0215-2.
Article
Google Scholar
Adams, J., Barmby, P., & Mesoudi, A. (Eds.). (2017). The nature and development of mathematics: Cross-discplinary perspectives on cognition, learning and culture. New York: Routledge.
Google Scholar
Amalric, M., Wang, L., Pica, P., Figueira, S., Sigman, M., & Dehaene, S. (2017). The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers. PLoS Computational Biology,13(1), e1005273. https://doi.org/10.1371/journal.pcbi.1005273.
Article
Google Scholar
Avigad, J., Dean, E., & Mumma, J. (2009). A formal system for Euclid’s Elements. Review of Symbolic Logic,2(4), 700–768. https://doi.org/10.1017/S1755020309990098.
Article
Google Scholar
Bassler, O. B. (2006). The surveyability of mathematical proof: A historical perspective. Synthese,148(1), 99–133. https://doi.org/10.1007/s11229-004-6221-7.
Article
Google Scholar
Battista, M. T. (2007). The development of geometric and spatial thinking. In F. K. Lester Jr (Ed.), Second handbook of research on mathematics teaching and learning (pp. 843–908). New York: Information Age Publishing. https://doi.org/10.2307/23084627.
Chapter
Google Scholar
Bauer, M. I., & Johnson-Laird, P. N. (1993). How diagrams can improve reasoning. Psychological Science,4(6), 372–378. https://doi.org/10.1111/j.1467-9280.1993.tb00584.x.
Article
Google Scholar
Bird, A. (1996). Squaring the circle: Hobbes on philosophy and geometry. Journal of the History of Ideas,57(2), 217–231. https://doi.org/10.1353/jhi.1996.0012.
Article
Google Scholar
Bowen, A. C. (1983). Menaechmus versus the Platonists: Two theories of science in the early academy. Ancient philosophy,3(1), 12–29. https://doi.org/10.5840/ancientphil19833116.
Article
Google Scholar
Burton, L. (1995). Moving towards a feminist epistemology of mathematics. Educational Studies in Mathematics,28(3), 275–291. https://doi.org/10.1007/BF01274177.
Article
Google Scholar
Cajori, F. (1928). A history of mathematical notations (Vol. 1). London: Open Court.
Google Scholar
Carey, S., & Spelke, E. S. (1996). Science and core knowledge. Philosophy of Science,63(4), 515–533. https://doi.org/10.1086/289971.
Article
Google Scholar
Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition,23(2), 149–178. https://doi.org/10.1016/0010-0277(86)90041-7.
Article
Google Scholar
Cheng, K., Huttenlocher, J., & Newcombe, N. S. (2013). 25 years of research on the use of geometry in spatial reorientation: a current theoretical perspective. Psychonomic Bulletin & Review,20(6), 1033–1054. https://doi.org/10.3758/s13423-013-0416-1.
Article
Google Scholar
Cheng, K., & Newcombe, N. S. (2005). Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin & Review,12(1), 1–23. https://doi.org/10.3758/BF03196346.
Article
Google Scholar
Cipora, K., Hohol, M., Nuerk, H.-C., Willmes, K., Brożek, B., Kucharzyk, B., et al. (2016). Professional mathematicians differ from controls in their spatial-numerical associations. Psychological Research,80, 710–726. https://doi.org/10.1007/s00426-015-0677-6.
Article
Google Scholar
Clark, A. (2006). Language, embodiment, and the cognitive niche. Trends in Cognitive Sciences,10(8), 370–374. https://doi.org/10.1016/j.tics.2006.06.012.
Article
Google Scholar
Clements, D. H., & Battista, M. T. (1990). The effects of Logo on Children’s conceptualizations of angle and polygons. Journal for Research in Mathematics Education,21(5), 356–371. https://doi.org/10.2307/749394.
Article
Google Scholar
Cohen Kadosh, R., & Dowker, A. (Eds.). (2015). The Oxford Handbook of Numerical Cognition. Oxford: Oxford University Press.
Google Scholar
Dehaene, S. (2011). The number sense (Revised). Oxford: Oxford University Press.
Google Scholar
Dehaene, S., Izard, V., Pica, P., & Spelke, E. S. (2006). Core knowledge of geometry in an Amazonian indigne group. Science,311(5579), 381–384. https://doi.org/10.1126/science.1121739.
Article
Google Scholar
Derdikman, D., & Moser, E. I. (2010). A manifold of spatial maps in the brain. Trends in Cognitive Sciences,14(12), 561–569. https://doi.org/10.1016/j.tics.2010.09.004.
Article
Google Scholar
Detlefsen, M. (2005). Formalism. In S. Shapiro (Ed.), The Oxford handbook of philosophy of mathematics and logic (pp. 236–317). Oxford: Oxford University Press.
Google Scholar
Dilks, D. D., Julian, J. B., Paunov, A. M., & Kanwisher, N. (2013). The occipital place area is causally and selectively involved in scene perception. The Journal of Neuroscience,33(4), 1331–1336. https://doi.org/10.1523/JNEUROSCI.4081-12.2013.
Article
Google Scholar
Dillon, M. R., Huang, Y., & Spelke, E. S. (2013). Core foundations of abstract geometry. Proceedings of the National Academy of Sciences,110(35), 14191–14195. https://doi.org/10.1073/pnas.1312640110/-/DCSupplemental.
Article
Google Scholar
Dillon, M. R., Persichetti, A. S., Spelke, E. S., & Dilks, D. D. (2017). Places in the brain: Bridging layout and object geometry in scene-selective cortex. Cerebral Cortex. https://doi.org/10.1093/cercor/bhx139.
Article
Google Scholar
Feigenson, L., Dehaene, S., & Spelke, E. S. (2004). Core systems of number. Trends in Cognitive Sciences,8(7), 307–314. https://doi.org/10.1016/j.tics.2004.05.002.
Article
Google Scholar
Ferreirós, J., & García-Pérez, M. J. (2018). ¿ « Natural » y « euclidiana » ?: Reflexiones sobre la geométrica práctica y sus raíces cognitivas. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia,33(2), 325–344.
Google Scholar
Fitzpatrick, R. (Ed.). (2008). Euclid’s Elements of geometry. from Euclidis Elementa by I. L. Heiberg (1883). Retrieved from http://farside.ph.utexas.edu/Books/Euclid/Elements.pdf. Accessed 15 Sept 2018.
Fodor, J. A. (1983). The modularity of mind. Cambridge: The MIT Press.
Google Scholar
Gallistel, C. (1990). The organization of learning. Cambridge: The MIT Press.
Google Scholar
Giaquinto, M. (2007). Visual thinking in mathematics. Oxford: Oxford University Press.
Google Scholar
Goldstone, R. L., & Janssen, M. A. (2005). Computational models of collective behavior. Trends in Cognitive Sciences,9(9), 424–430. https://doi.org/10.1016/j.tics.2005.07.009.
Article
Google Scholar
Goldstone, R. L., Marghetis, T., Weitnauer, E., Ottmar, E. R., & Landy, D. (2017). Adapting perception, action, and technology for mathematical reasoning. Current Directions in Psychological Science,26(5), 434–441. https://doi.org/10.1177/0963721417704888.
Article
Google Scholar
Gouteux, S., & Spelke, E. S. (2001). Children’s use of geometry and landmarks to reorient in an open space. Cognition,81(2), 119–148. https://doi.org/10.1016/S0010-0277(01)00128-7.
Article
Google Scholar
Grill-Spector, K., Golarai, G., & Gabrieli, J. (2008). Developmental neuroimaging of the human ventral visual cortex. Trends in Cognitive Sciences,12(4), 152–162. https://doi.org/10.1016/j.tics.2008.01.009.
Article
Google Scholar
Gureckis, T. M., & Goldstone, R. L. (2006). Thinking in groups. Pragmatics & Cognition,14(2), 293–311. https://doi.org/10.1075/pc.14.2.10gur.
Article
Google Scholar
Hadamard, J. (1945). An essay on the psychology of invention in the mathematical field. New York: Dover Publications.
Google Scholar
Hartshorne, R. (2007). Geometry: Euclid and beyond. New York: Springer.
Google Scholar
Henik, A. (Ed.). (2016). Continuous issues in numerical cognition. London: Academic Press.
Google Scholar
Hermer, L., & Spelke, E. S. (1994). A geometric process for spatial orientation in young children. Nature,370(3), 57–59. https://doi.org/10.1016/S0010-0277(96)00714-7.
Article
Google Scholar
Hilbert, D. (1950). Foundations of geometry. (E. J. Townsend, Trans.). LaSalle: The Open Court Publishing Company.
Google Scholar
Hohol, M., Baran, B., Krzyżowski, M., & Francikowski, J. (2017a). Does spatial navigation have a blind-spot? Visiocentrism is not enough to explain the navigational behavior comprehensively. Frontiers in Behavioral Neuroscience,11, 154. https://doi.org/10.3389/fnbeh.2017.00154.
Article
Google Scholar
Hohol, M., Cipora, K., Willmes, K., & Nuerk, H.-C. (2017b). Bringing back the balance: domain-general processes are also important in numerical cognition. Frontiers in Psychology,8, 499. https://doi.org/10.3389/fpsyg.2017.00499.
Article
Google Scholar
Horst, S. (2016). Cognitive pluralism. Cambridge: MIT Press.
Google Scholar
Izard, V., & Spelke, E. S. (2009). Development of sensitivity to geometry in visual forms. Human Evolution,23(3), 213–248.
Google Scholar
Kluge, E.-H. W. (1976). Roscelin and the medieval problem of universals. Journal of the History of Philosophy,14(4), 405–414. https://doi.org/10.1353/hph.2008.0088.
Article
Google Scholar
Kourtzi, Z., & Kanwisher, N. (2001). Representation of perceived object shape by the human Lateral Occipital Complex. Science,293(2001), 1506–1509. https://doi.org/10.1126/science.1061133.
Article
Google Scholar
Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from. New York: Basic Books.
Google Scholar
Landau, B., & Jackendoff, R. (1993). ‘What’ and ‘where’ in spatial language and spatial cognition. Behavioral and Brain Sciences,16(02), 217–238. https://doi.org/10.1017/S0140525X00029733.
Article
Google Scholar
Landau, B., & Lakusta, L. (2009). Spatial representation across species: geometry, language, and maps. Current Opinion in Neurobiology,19, 12–19.
Google Scholar
Landy, D., Allen, C., & Zednik, C. (2014). A perceptual account of symbolic reasoning. Frontiers in Psychology,5(275), 1–10. https://doi.org/10.3389/fpsyg.2014.00275.
Article
Google Scholar
Lee, S. A., & Spelke, E. S. (2008). Children’s use of geometry for reorientation. Developmental Science,11(5), 743–749. https://doi.org/10.1111/j.1467-7687.2008.00724.x.
Article
Google Scholar
LeFevre, J.-A. (2016). Numerical cognition: adding it up. Canadian Journal of Experimental Psychology,70(1), 3–11. https://doi.org/10.1037/cep0000062.
Article
Google Scholar
Leonardis, R. (2016). The use of geometry by ancient Greek architects. In M. M. Miles (Ed.), A companion to Greek architecture (pp. 92–104). New York: Chichester.
Google Scholar
Magnani, L. (2001). Philosophy and geometry: Theoretical and historical issues. Dordrecht: Springer Science & Business Media. https://doi.org/10.1007/978-94-010-9622-5.
Book
Google Scholar
Magnani, L. (2009). Abductive cognition: The epistemological and eco-cognitive dimensions of hypothetical reasoning. Heidelberg: Springer.
Google Scholar
Magnani, L. (2013). Thinking through drawing. The Knowledge Engineering Review,28(03), 303–326. https://doi.org/10.1017/S026988891300026X.
Article
Google Scholar
Maguire, E. A. (2001). The retrosplenial contribution to human navigation: A review of lesion and neuroimaging findings. Scandinavian Journal of Psychology,42(3), 225–238.
Google Scholar
Malet, A. (2012). Euclid’s swan song: Euclid’s Elements in early modern Europe. In P. Olmos (Ed.), Greek science in the long run (pp. 205–234). Cambridge: Cambridge Scholars Publishing.
Google Scholar
Manders, K. (2008). The Euclidean diagram. In P. Mancosu (Ed.), The philosophy of mathematical practice (pp. 80–133). Oxford: Oxford University Press.
Google Scholar
Marciszewski, W., & Murawski, R. (1995). Mechanization of reasoning in a historical perspective. Amsterdam: Rodopi.
Google Scholar
Menary, R. (2015). Mathematical cognition: A case of enculturation. In T. Metzinger & J. M. Windt (Eds.), Open MIND (Vol. 25). Frankfurt am Main: Johannes Gutenberg Universität Mainz. https://doi.org/10.15502/9783958570818.
Chapter
Google Scholar
Merzbach, U. C., & Boyer, C. B. (2011). A history of mathematics (3rd ed.). Hoboken: John Wiley & Sons.
Google Scholar
Miller, N. (2007). Euclid and his twentieth century rivals: Diagrams in the logic of Euclidean geometry. Stanford: CSLI Publications.
Google Scholar
Milner, A. D., & Goodale, M. A. (2006). The visual brain in action. Oxford: Oxford University Press.
Google Scholar
Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: two cortical pathways. Trends in Neurosciences,6, 414–417. https://doi.org/10.1016/0166-2236(83)90190-X.
Article
Google Scholar
Moser, E. I., Kropff, E., & Moser, M.-B. (2008). Place cells, grid cells, and the brain’s spatial representation system. Annual Review of Neuroscience,31(1), 69–89. https://doi.org/10.1146/annurev.neuro.31.061307.090723.
Article
Google Scholar
Moser, E. I., Moser, M.-B., & McNaughton, B. L. (2017). Spatial representation in the hippocampal formation: a history. Nature,20(11), 1448–1464. https://doi.org/10.1038/nn.4653.
Article
Google Scholar
Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature,215(5109), 1519–1520. https://doi.org/10.1038/2151519a0.
Article
Google Scholar
Mueller, I. (1981). Philosophy of mathematics and deductive structure in Euclid’s Elements. Cambridge: The MIT Press.
Google Scholar
Mumma, J. (2009). Proofs, pictures, and Euclid. Synthese,175(2), 255–287. https://doi.org/10.1007/s11229-009-9509-9.
Article
Google Scholar
Netz, R. (1998). Greek mathematical diagrams: Their use and their meaning. For the Learning of Mathematics,18(3), 33–39. https://doi.org/10.2307/40248278.
Article
Google Scholar
Netz, R. (1999). Linguistic formulae as cognitive tools. Pragmatics & Cognition,7(1), 147–176. https://doi.org/10.1075/pc.7.1.07net.
Article
Google Scholar
Netz, R. (2003). The shaping of deduction in Greek mathematics: A study in cognitive history. Cambridge: Cambridge University Press.
Google Scholar
Norman, D. A. (1991). Cognitive artifacts. In J. Carroll (Ed.), Designing interaction: Psychology at the human-computer interface (pp. 17–38). Cambridge: Cambridge University Press.
Google Scholar
Núñez, R. E. (2017a). Is there really an evolved capacity for number? Trends in Cognitive Sciences,21(6), 409–424. https://doi.org/10.1016/j.tics.2017.03.005.
Article
Google Scholar
Núñez, R. E. (2017b). Number—Biological enculturation beyond natural selection. Trends in Cognitive Sciences,21(6), 404–405. https://doi.org/10.1016/j.tics.2017.03.013.
Article
Google Scholar
Núñez, R. E., & Lakoff, G. (2005). The cognitive foundations of mathematics: The role of conceptual metaphor. In J. I. D. Campbell (Ed.), The handbook of mathematical cognition (pp. 109–124). New York.
O’Keffe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Oxford University Press.
Google Scholar
Panza, M. (2012). The twofold role of diagrams in Euclid’s plane geometry. Synthese,186(1), 55–102. https://doi.org/10.1007/s11229-012-0074-2.
Article
Google Scholar
Park, W. (2017). Magnani’s manipulative abduction. In L. Magnani & T. Bertolotti (Eds.), Springer handbook of model-based science (pp. 197–218). Dordrecht: Springer.
Google Scholar
Pasch, M. (1912). Vorlesungen über die neuere Geometrie. Leipzig: Teubner.
Google Scholar
Peirce, C. S. (1976). Lowell lectures. Lecture 2. In C. Eisele (Ed.), The new elements of mathematics, Vol. III/1 (C. Eisele, Ed.). Hague: Mouton Publishers.
Google Scholar
Peirce, C. S. (1991). Minute Logic. In J. Hoopes (Ed.), Peirce on signs: Writings on semiotic (pp. 213–238). Chapel Hill: University of North Carolina Press.
Google Scholar
Penrose, R. (1996). Beyond the doubting of a shadow. Psyche,2(23), 89–129.
Google Scholar
Persichetti, A. S., & Dilks, D. D. (2016). Perceived egocentric distance sensitivity and invariance across scene-selective cortex. Cortex,77, 155–163. https://doi.org/10.1016/j.cortex.2016.02.006.
Article
Google Scholar
Piaget, J., Inhelder, B., & Szeminska, A. (1960). The child’s conception of geometry. New York: W. W. Norton Company.
Google Scholar
Proclus, A. (1970). Commentary on the First Book of Euclid’s Elements. (G. R. Morrow, Trans.). Princeton: Princeton University Press.
Google Scholar
Rav, Y. (2007). A critique of a formalist-mechanist version of the justification of arguments in mathematicians’ proof practices. Philosophia Mathematica,15(3), 291–320. https://doi.org/10.1093/philmat/nkm023.
Article
Google Scholar
Rivera, F. D., & Becker, J. R. (2007). Abduction–induction (generalization) processes of elementary majors on figural patterns in algebra. The Journal of Mathematical Behavior,26(2), 140–155. https://doi.org/10.1016/j.jmathb.2007.05.001.
Article
Google Scholar
Russo, L. (2004). The forgotten revolution. Berlin: Springer.
Google Scholar
Scriba, C. J., & Schreiber, P. (2015). 5000 years of geometry: Mathematics in history and culture. Basel: Birkhäuser.
Google Scholar
Seidenberg, A. S. S. (1959). Peg and cord in ancient Greek geometry. Scripta Mathematica,22, 107–122.
Google Scholar
Sloman, A. (1978). The computer revolution in philosophy: Philosophy, science and models of mind. Sussex: Harvester Press.
Google Scholar
Sloman, A. (2002). Diagrams in mind? In M. Anderson, B. Meyer, & P. Olivier (Eds.), Diagrammatic representation and reasoning (pp. 7–28). London: Springer-Verlag.
Google Scholar
Spelke, E. S. (2003). What makes us smart? Core knowledge and natural language. In D. Gentner & S. Goldin-Meadow (Eds.), Language in mind: Advances in the study of language and thought (pp. 277–311). Cambridge: Bradford Book.
Google Scholar
Spelke, E. S., Gilmore, C. K., & McCarthy, S. (2011). Kindergarten children’s sensitivity to geometry in maps. Developmental Science,14(4), 809–821. https://doi.org/10.1111/j.1467-7687.2010.01029.x.
Article
Google Scholar
Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science,10(1), 89–96. https://doi.org/10.1111/j.1467-7687.2007.00569.x.
Article
Google Scholar
Spelke, E. S., & Lee, S. A. (2012). Core systems of geometry in animal minds. Philosophical Transactions of the Royal Society B: Biological Sciences,367(1603), 2784–2793. https://doi.org/10.1098/rstb.2012.0210.
Article
Google Scholar
Spelke, E. S., Lee, S. A., & Izard, V. (2010). Beyond core knowledge: Natural geometry. Cognitive Science,34(5), 863–884. https://doi.org/10.1111/j.1551-6709.2010.01110.x.
Article
Google Scholar
Stjernfelt, F. (2007). Diagrammatology: An investigation on the borderlines of phenomenology, ontology, and semiotics. Dordrecht: Springer.
Google Scholar
Stjernfelt, F. (2011). Peirce’s notion of diagram experiment: Corrollarial and theorematical experiments with diagrams. In R. Heinrich, E. Nemeth, W. Pichler, & D. Wagner (Eds.), Image and imaging in philosophy, science and the arts (Vol. II, p. 305). Frankfurt: Ontos Verlag.
Google Scholar
Szabó, A. (1978). The beginnings of Greek mathematics. Dordrecht: Reidel Publishing.
Google Scholar
Thinus-Blanc, C., Chabanne, V., Tomassi, L., Peruch, P., & Vauclair, J. (2010). The encoding of geometry in various vertebrate species. In F. L. Dolins & R. W. Mitchell (Eds.), Spatial cognition, spatial perception (pp. 99–116). Cambridge: Cambridge University Press.
Google Scholar
Tomassi, L., Chiandetti, C., Pecchia, T., Sovrano, V. A., & Vallortigara, G. (2012). From natural geometry to spatial cognition. Neuroscience and Biobehavioral Reviews,36(2), 799–824. https://doi.org/10.1016/j.neubiorev.2011.12.007.
Article
Google Scholar
Tylén, K., Fusaroli, R., Bjørndahl, J. S., Rączaszek-Leonardi, J., Østergaard, S., & Stjernfelt, F. (2014). Diagrammatic reasoning: Abstraction, interaction, and insight. Pragmatics & Cognition,22(2), 264–283. https://doi.org/10.1075/pc.22.2.06tyl.
Article
Google Scholar
Tymoczko, T. (1979). The four-color problem and its philosophical significance. The Journal of Philosophy,76(2), 57–83. https://doi.org/10.2307/2025976.
Article
Google Scholar
van Hiele, P. M. (1986). Structure and insight. Orlando: Academic Press.
Google Scholar
Vlastos, G. (1995). Zeno of Sidon as a critic of Euclid. In D. W. Graham (Ed.), Studies in Greek philosophy (Vol. II, pp. 315–324)., Socrates Plato and their tradition Princeton: Princeton University Press.
Google Scholar
Wang, R. F., & Spelke, E. S. (2002). Human spatial representation: Insights from animals. Trends in Ecology & Evolution,6(9), 376–382. https://doi.org/10.1016/S1364-6613(02)01961-7.
Article
Google Scholar
Weir, A. A. S., Chappell, J., & Kacelnik, A. (2002). Shaping of hooks in New Caledonian crows. Science,297(5583), 981. https://doi.org/10.1126/science.1073433.
Article
Google Scholar
Wilson, R. A. (2004). Boundaries of the mind. Cambridge: Cambridge University Press.
Google Scholar
Wilson, T. D., & Nisbett, R. E. (1977). Telling more than we can know: Verbal reports on mental processes. Psychological Review,84(3), 231–259. https://doi.org/10.1037/0033-295X.84.3.231.
Article
Google Scholar
Wołoszyn, K., & Hohol, M. (2017). Commentary: The poverty of embodied cognition. Frontiers in Psychology,8, 845. https://doi.org/10.3389/fpsyg.2017.00845.
Article
Google Scholar
Zoccolan, D., Oertelta, N., DiCarlo, J. J., & Cox, D. D. (2009). A rodent model for the study of invariant visual object recognition. Proceedings of the National Academy of Sciences,106(21), 8748–8875. https://doi.org/10.1073/pnas.0811583106.
Article
Google Scholar