Skip to main content
Log in

Vortex intensification in convective cells

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The intensification of single vortices in convective flows swirled by the Coriolis force is studied numerically. The initial disturbances, specified against the background of a steady cell, are coaxial with the cell flow and have various swirl directions, intensities, and dimensions. It is shown that the vortices are intensified no matter whether the direction of disturbing vortex rotation is co- or counter-directional with the Coriolis force. If the disturbance intensity is small as compared with that of the convective-cell flow, the growth of the azimuthal velocity circulation in the perturbing vortices depends linearly on their initial circulation. For such vortices, the energy increase is proportional to the characteristic vortex radius to the power −5/3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. S. Moiseev R. Z. Sagdeev A. V. Tur G. A. Khomenko V. V. Yanovskii (1983) ArticleTitleTheory of generation of large-scale structures in hydrodynamic turbulence Zh. Experim. Tekhn. fiz. 85 IssueID6 1979–1987

    Google Scholar 

  2. S. S. Moiseev R. Z. Sagdeev A. V. Tur G. A. Khomenko A. M. Shukurov (1983) ArticleTitlePhysical mechanism of enhancement of vortex disturbances in the atmosphere Dokl. Akad. Nauk SSSR 273 IssueID3 549–553

    Google Scholar 

  3. Yu. A. Berezin and V. M. Trofimov, “Generation of large-scale vortices under the action of nonequilibrium turbulence,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 47–55 (1996).

  4. M. F. Ivanov V. A. Gal’burt V. E. Fortov (1996) A possible mechanism of formation of large-scale disturbances in the atmosphere of Jupiter induced by the fall of fragments of the Schumacher-Levi comet, Pis’ma v ZhÉTF 63 IssueID10 773–777

    Google Scholar 

  5. V. A. Gal’burt M. F. Ivanov M. E. Povarnitsyn V. E. Fortov F. F. Kamenets I. I. Korobov (1998) ArticleTitleEvolution of disturbances in planetary atmospheres induced by the fall of large cosmic bodies Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana 34 IssueID4 537–545

    Google Scholar 

  6. A. N. Kolmogorov (1941) ArticleTitleLocal turbulence structure in an incompressible viscous fluid at very large Reynolds numbers Dokl. Akad. Nauk SSSR 30 IssueID4 299–303

    Google Scholar 

  7. A. M. Obukhov (1941) ArticleTitleOn the energy distribution in the turbulent-flow spectrum Dokl. Akad. Nauk SSSR 32 IssueID1 22–24

    Google Scholar 

  8. A. A. Townsend (1951) ArticleTitleOn the finite-scale structure of turbulence Proc. Roy. Soc. 208 IssueID1095 534–542

    Google Scholar 

  9. T. S. Lundgren (1993) ArticleTitleA small-scale turbulence model Phys. Fluids A 5 IssueID6 1472–1483

    Google Scholar 

  10. S. E. Widnall D. B. Bliss T. Chon-Yin (1974) ArticleTitleThe instability of short waves on a vortex ring J. Fluid Mech. 66 IssueID1 35–47

    Google Scholar 

  11. M. F. Ivanov and M. E. Povarnitsyn, “Numerical modeling of the evolution of intense convective vortices of the typhoon type in a rotating fluid,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 69–77 (2003).

  12. K. Bryan (1969) ArticleTitleA numerical method for the study of the circulation of the world ocean J. Comput. Phys. 4 IssueID3 347–376

    Google Scholar 

  13. A. Semtner Y. Mintz (1977) ArticleTitleNumerical simulation of the Gulf Stream and mid-ocean eddies J. Phys. Oceanogr. 7 IssueID2 208–230

    Google Scholar 

  14. G. P. Bogatyrev B. L. Smorodin (1996) ArticleTitlePhysical model of the rotation of a tropical cyclone Pis’ma v ZhÉTF 63 IssueID1–2 25–28

    Google Scholar 

Download references

Authors

Additional information

Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, 2004, pp. 62–68. Original Russian Text Copyright © 2004 by Ivanov and Povarnitsyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, M.F., Povarnitsyn, M.E. Vortex intensification in convective cells. Fluid Dyn 39, 729–734 (2004). https://doi.org/10.1007/s10697-005-0006-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10697-005-0006-7

Keywords

Navigation