Skip to main content
Log in

The nonlinear decay of vortex flows in a rotating fluid

  • Geophysics
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

The manifestations of the cyclone-anticyclone asymmetry effect, which is observed in nature [1–3] and in laboratory experiments with a rotating fluid [4–6], have been studied in the scope of the vorticity evolution generalized equation. Under laboratory conditions, asymmetry is observed as a faster decay of cyclonic vortices as compared to anticyclonic ones. This effect has been analytically described simply based on the problem of the vortex spot decay and spatially periodic vortex lattice. It has been indicated that anticyclonic vortices compress and cyclonic ones expand when a lattice damps. Examples of exact solutions of the vorticity equation [7] (describing, specifically, collapsing of an axisymmetric vortex core with anticyclonic vorticity) have been constructed. The effect of the Ekman friction on the interaction between singular vortices is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Nezlin, Usp. Fiz. Nauk 150, 3–58 (1986).

    Article  Google Scholar 

  2. I. I. Mokhov, O. I. Mokhov, V. K. Petukhov, and R. R. Khairullin, Izv. Atmos. Ocean. Phys. 28(1), 11–26 (1992).

    Google Scholar 

  3. M. G. Akperov, M. Yu. Bardin, E. M. Volodin, G. S. Golitsyn, and I. I. Mokhov, Izv. Atmos. Ocean. Phys. 43(6), 705–712 (2007).

    Article  Google Scholar 

  4. V. M. Ponomarev, A. A. Khapaev, and I. G. Yakushkin, Dokl. Earth Sci. 425A(3), 510 (2009).

    Article  Google Scholar 

  5. S. V. Kostrykin, A. A. Khapaev, and I. G. Yakushkin, J. Exp. Theor. Phys. 112(2), 344–354 (2011).

    Article  Google Scholar 

  6. S. V. Kostrykin, A. A. Khapaev, and I. G. Yakushkin

  7. Z. L. Sanson and G. J. van Heijst, J. Fluid. Mech. 412, 75–91 (2000). JETP Lett. 95 (10), 515–520 (2012).

    Article  Google Scholar 

  8. H. P. Greenspan, The Theory of Rotating Fluids (Cambridge Univ. Press, Cambridge, 1968).

    Google Scholar 

  9. J. Pedlosky, Geophysical Fluid Dynamics (Springer, New York, 1987).

    Book  Google Scholar 

  10. S. N. Aristov, “Vortex flows in thin fluid layers,” Doctoral (Phys.-Math.) Dissertation (Inst. of Continuum Mechanics, Ural Dep. Acad. Sci. USSR, Perm, 1990) [in Russian].

    Google Scholar 

  11. V. F. Kozlov and A. Yu. Gurulev, Izv., Atmos. Ocean. Phys. 28(4), 406–415 (1992).

    Google Scholar 

  12. Z. L. Sanson, Europ. J. Mech. B. Fluids 20, 541–556 (2001).

    Article  Google Scholar 

  13. N. P. Malikova and M. S. Permyakov, Fluid Dyn., No. 6, 905–908 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kalashnik.

Additional information

Original Russian Text © M.V. Kalashnik, O.G. Chkhetiani, 2014, published in Doklady Akademii Nauk, 2014, Vol. 456, No. 6, pp. 717–722.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalashnik, M.V., Chkhetiani, O.G. The nonlinear decay of vortex flows in a rotating fluid. Dokl. Earth Sc. 456, 769–774 (2014). https://doi.org/10.1134/S1028334X14060348

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X14060348

Keywords

Navigation