Skip to main content
Log in

Fluid models for customer service web chat systems with interactive automated service

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

In addition to traditional call centers, companies have increasingly started developing a new type of customer contact center over the Internet, rather than using phone calls, where customers communicate with agents online through a website. Apart from lining up for an agent service, customers have the option of an interactive self-help response and thus can obtain faster service. In such a new customer contact center, managers are inclined to induce customers to use an automated service to reduce manpower costs. Under such circumstances, delay announcements play an important role in guiding customer behavior derived from an avoid-the-crowd option into a self-help choice. Motivated by this, we characterize the underlying stochastic processes by establishing a fluid model in overloaded regimes, and propose that the key to the model is a customer response resulting from system interactions based on a deterministic approximation. Furthermore, we prove that the fluid limit of the model is a unique solution to a complicated queueing system using differential equations. Based on numerical examples, the approximation is shown to be effective in overloaded regimes through comparisons with simulations.A key managerial insight is that the lower the service level is required for staffing, the more effective automated service and the guidance of delay announcement are.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abouee-Mehrizi H, Zare AG, Konrad R (2018) Pricing in service systems with rational balking and abandonment of time-sensitive customers. Production and operations management

  • Aguir M, Aksin O, Karaesmen F, Dallery Y (2008) On the interaction between retrials and sizing of call centers. Eur J Oper Res 191:398–408

    Article  MATH  Google Scholar 

  • Aguir MS, Karaesmen F, Aksin OZ, Chauvet F (2004) The impact of retrials on call center performance. OR Spect 26(3):353–376

    Article  MathSciNet  MATH  Google Scholar 

  • Armony M, Shimkin N, Whitt W (2009) The impact of delay announcements in many-server queues with abandonment. Oper Res 57(1):66–84

    Article  MATH  Google Scholar 

  • Brandt A, Brandt M, Spahl G, Weber D (1997) Modelling and optimization of call distribution systems. Teletraffic Sci Eng 2:133–144

    Article  Google Scholar 

  • Chen H, Yao DD (2001) Fundamentals of queueing networks performance, asymptotics, and optimization. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Cui L, Tezcan T (2016) Approximations for chat service systems using many-server diffusion limits. Math Oper Res 41(3):775–807

    Article  MathSciNet  MATH  Google Scholar 

  • Ding S, Koole G, Mei R (2015) On the estimation of the true demand in call centers with redials and reconnects. Eur J Oper Res 246:250–262

    Article  MathSciNet  MATH  Google Scholar 

  • Ding S, Remerova M, der Mei Van RD, Zwart B (2015) Fluid approximation of a call center model with redials and reconnects. Perform Eval 92:24–39

    Article  Google Scholar 

  • Ethier SN, Thomas GK (1986) Markov processes: characterization and convergence. Wiley, New York

    Book  MATH  Google Scholar 

  • Guo P, Zipkin P (2007) Analysis and comparison of queues with different levels of delay information. Manag Sci 53(6):962–970

    Article  MATH  Google Scholar 

  • Hassin R (1986) Consumer information in markets with random product quality: the case of queues and balking. Econometrica 54:1185–1195

    Article  MathSciNet  Google Scholar 

  • Hui MK, Tse DK (1996) What to tell consumers in waits of different lengths: an integrative model of service evaluation. J Market 60(2):81–90

    Article  Google Scholar 

  • Ibrahim R, Whitt W (2009) Real-time delay estimation based on delay history. Manufac Serv Oper Manag 11(3):397–415

    Article  Google Scholar 

  • Ibrahim R, Whitt W (2009) Real-time delay estimation in overloaded multiserver queues with abandonments. Manag Sci 55(10):1729–1742

    Article  MATH  Google Scholar 

  • Ibrahim R, Whitt W (2011) Real-time delay estimation based on delay history in many-server queue with time-varying arrivals. Prod Oper Manag 20(5):654–667

    Article  Google Scholar 

  • Ibrahim R, Whitt W (2011) Wait-time predictors for customer service systems with time-varying demand and capacity. Oper Res 59(5):1106–1118

    Article  MathSciNet  MATH  Google Scholar 

  • Ibrahim R, Armony M, Bassamboo A (2017) Does the past predict the future? The case of delay announcements in service systems. Manag Sci 63(6):1762–1780

    Article  Google Scholar 

  • Jouini O, Akşin Z, Dallery Y (2011) Call centers with delay information: models and insights. Manuf Serv Oper Manag 13(4):534–548

    Article  Google Scholar 

  • Khudyakov P, Feigin PD, Mandelbaum A (2010) Designing a call center with an IVR (interactive voice response). Queue Syst 66(3):215–237

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar A, Telang R (2012) Does the web reduce customer service cost? empirical evidence from a call center. Inf Syst Res 23(3):721–737

    Article  Google Scholar 

  • Legros B, Jouini O (2019) On the scheduling of operations in a chat contact center. Eur J Oper Res 274(1):303–316

    Article  MathSciNet  MATH  Google Scholar 

  • Li S, Wang Q, Koole G (2019) Optimal contact center staffing and scheduling with machine learning. Working paper

  • Long Z, Tezcan T, Zhang J (2018) Customer service chat systems with general service and patience times. Social Science Electronic Publishing

  • Luo J, Zhang J (2013) Staffing and control of instant messaging contact centers. Oper Res 61(2):328–343

    Article  MathSciNet  MATH  Google Scholar 

  • Macarena L, Pilar M (2008) A discrete time single-server queue with balking: economic applications. Appl Econ 40(6):735–748

    Article  Google Scholar 

  • Maister D, Czepiel JA, Solomon MR, Surprenant CF (1985) The service encounter: managing employee/customer interaction in service businesses Lexington Books. Lexington, MA

    Google Scholar 

  • Munichor N, Rafaeli A (2007) Numbers or apologies? Customer reactions to telephone waiting time fillers. J Appl Psychol 92(2):511

    Article  Google Scholar 

  • Naor P (1969) The regulation of queue size by levying tolls. Econometrica 37:15–24

    Article  MATH  Google Scholar 

  • Reed J, Ward AR (2004) A diffusion approximation for a generalized jackson network with reneging. In: Proceedings of the 42nd annual Allerton conference on communication, control, and computing

  • Shae ZY, Garg D, Bhose R, Mukherjee R, Guven S, Pingali G (2007) Efficient internet chat services for help desk agents. In: IEEE international conference on services computing (SCC 2007), pp 589–596

  • Shin Y, Choo T (2009) M/m/s queue with impatient customers and retrials. Appl Math Modell 33:2596–2606

    Article  MathSciNet  MATH  Google Scholar 

  • Srinivasan R, Talim J, Wang J (2004) Performance analysis of a call center with interactive voice response units. Top 12(1):91–110

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor S (1994) Waiting for service: the relationship between delays and evaluations of service. J Market 58(2):56–69

    Article  Google Scholar 

  • TELUS International (2011) Best practices: Online sales. White Paper, TELUS Communication Company, Canada

  • Tezcan T, Behzad B (2012) Robust design and control of call centers with flexible interactive voice response systems. Manufac Serv Oper Manag 14(3):386–401

    Article  Google Scholar 

  • Tezcan T, Zhang J (2014) Routing and staffing in customer service chat systems with impatient customers. Oper Res 62(4):943–956

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Cui S, Wang Z (2018) Equilibrium strategies in m/m/ 1 priority queues with balking. Production and operations management 28

  • Wang Q, Zhang B (2018) Analysis of a busy period queuing system with balking, reneging and motivating. Appl Math Modell 64:480–488

    Article  MathSciNet  MATH  Google Scholar 

  • Whitt W (1999) Improving service by informing customers about anticipated delays. Manag Sci 45(2):192–207

    Article  MATH  Google Scholar 

  • Whitt W (2006) Fluid models for multiserver queues with abandonments. Oper Res 54(1):37–54

    Article  MathSciNet  MATH  Google Scholar 

  • Xue M, Hitt LM, Harker PT (2007) Customer efficiency, channel usage, and firm performance in retail banking. Manufac Serv Oper Manag 9(4):535–558

    Article  Google Scholar 

  • Yankee Group (2006) Great expectations: Self-service success can happen. Report, Yankee Group, Boston, Available on http://www.ccng.com/files/public/Yankee_SelfService.pdf

  • Yom-Tov G, Mandelbaum A (2014) Erlang-r: a time-varying queue with reentrant customers, in support of healthcare staffing. Manufac Serv Oper Manag 16:283–299

    Article  Google Scholar 

  • Yu M, Tang J, Kong F, Chang C (2018) Fluid models for call centers with delay announcement and retrials. Knowl Based Syst 149:99–109

    Article  Google Scholar 

  • Zhang J, Zwart B (2008) Steady state approximations of limited processor sharing queues in heavy traffic. Queuing Syst 60(3–4):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang J, Dai J, Zwart B (2009) Law of large number limits of limited processor-sharing queues. Math Oper Res 34(4):937–970

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China [grant number 71701137, 61873174, 51678375], and Science Research Project of Liaoning Department of Education [grant number lnqn202029].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhao.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

First, for convenience regarding our analysis, the fluid scaled processes are defined as follows:

$$\begin{aligned} {{\bar{Q}}}_s^n\left( t \right)= & {} {\varPi _1}{{\left( {n\int _0^t {\mu \min \left( {s,{{\bar{\mathrm{Z}}}^n}\left( u \right) du} \right) } } \right) } \big / n}, \end{aligned}$$
(28)
$$\begin{aligned} {{\bar{Q}}}_a^n\left( t \right)= & {} {\varPi _2}{{\left( {n\int _0^t {\gamma '{{\left( {{{\bar{\mathrm{Z}}}^n}\left( u \right) - s} \right) }^{{ + }}}du} } \right) } \big / n}, \end{aligned}$$
(29)
$$\begin{aligned} {{\bar{Q}}}_A^n\left( t \right)= & {} {\varPi _3}{{\left( {n\int _0^t {\delta {{{{\bar{A}}}}^n}\left( u \right) du} } \right) } \big / n}, \end{aligned}$$
(30)
$$\begin{aligned} {{\bar{\varLambda }}} _a^n\left( t \right)= & {} \sum \limits _{r = 1}^{\varLambda ^n\left( t \right) } {{{1\left\{ {{d_r} \le {w_r}} \right\} } \big / n}}, \end{aligned}$$
(31)
$$\begin{aligned} {{\bar{\varLambda }}} _{\mathrm{A}}^n\left( t \right)= & {} \sum \limits _{r = 1}^{n{{\bar{\varLambda }}} _b^n\left( t \right) } {{{{B_r}\left( p \right) } \big / n}}. \end{aligned}$$
(32)
$$\begin{aligned} {{\bar{\varLambda }}} _{RE}^n\left( t \right)= & {} \sum \limits _{r = 1}^{n{\bar{Q}}_A^n\left( t \right) } {{{{B_r}\left( q \right) } \big / n}}, \end{aligned}$$
(33)

where \(\varLambda ^n\left( \cdot \right)\) is a Poisson process of \(\lambda n\). Next, we define the martingales related to the stochastic process.

$$\begin{aligned} {{\bar{M}}}_Z^n\left( t \right)= & {} \left( {{{\bar{\varLambda }}} _a^n\left( t \right) - \int _0^t {\lambda {{\left( {1 - {p^b}\left( {{{\overline{\mathrm{Z}} }^n}\left( u \right) - s} \right) } \right) }^ + }du} } \right) \nonumber \\&- \left( {{{\bar{Q}}}_s^n\left( t \right) - \int _0^t {\mu \min \left\{ {s,{{{{\bar{Z}}}}^n}\left( u \right) } \right\} du} } \right) \nonumber \\&- \left( {{{\bar{Q}}}_a^n\left( t \right) - \int _0^t {\gamma '{{\left( {{{\overline{\mathrm{Z}} }^n}\left( u \right) - s} \right) }^{{ + }}}du} } \right) \nonumber \\&+ \left( {{{\bar{\varLambda }}} _{RE}^n\left( t \right) - \int _0^t {q\delta {{{{\bar{A}}}}^n}\left( u \right) {{\left( {1 - {p^b}\left( {{{\overline{\mathrm{Z}} }^n}\left( u \right) - s} \right) } \right) }^ + }du} } \right) \end{aligned}$$
(34)
$$\begin{aligned} {{\bar{M}}}_A^n\left( t \right)= & {} \left( {{{\bar{\varLambda }}} _A^n\left( t \right) - \int _0^t {\lambda {p^b}{{\left( {{{\bar{\mathrm{Z}}}^n}\left( u \right) - s} \right) }^{{ + }}}du} } \right) - \left( {{\bar{Q}}_A^n\left( t \right) - \int _0^t {\delta {{{{\bar{A}}}}^n}\left( u \right) du} } \right) . \end{aligned}$$
(35)

Based on the definition above from Eq. (34) and (35), the fluid scaled stochastic dynamic equations can be written as follows:

$$\begin{aligned} {\bar{\mathrm{Z}}^n}\left( t \right)= & {} {\bar{\mathrm{Z}}^n}\left( 0 \right) + {{\bar{M}}}_Z^n\left( t \right) + \int _0^t {{\beta _Z}\left( {{{{\bar{Z}}}^n}} \right) \left( u \right) du}, \end{aligned}$$
(36)
$$\begin{aligned} {{{\bar{A}}}^n}\left( t \right)= & {} {{{\bar{A}}}^n}\left( 0 \right) + {\bar{M}}_A^n\left( t \right) + \int _0^t {{\beta _A}\left( {{{{{\bar{A}}}}^n}} \right) \left( u \right) du}, \end{aligned}$$
(37)

Where

$$\begin{aligned}&\int _0^t {{\beta _Z}\left( {{{{{\bar{Z}}}}^n}} \right) \left( u \right) du} \nonumber \\&\quad = \int _0^t {\lambda \left( \begin{array}{l} 1 - {p^b}{\left( {{{{{\bar{Z}}}}^n}\left( u \right) - s} \right) ^ + } - \mu \min \left\{ {s,{{{{\bar{Z}}}}^n}\left( u \right) } \right\} - \gamma '{\left( {{{{{\bar{Z}}}}^n}\left( u \right) - s} \right) ^ + }\\ + q\delta {{\bar{\mathrm{A}}}^n}\left( u \right) \left( {1 - {p^b}{{\left( {{{{{\bar{Z}}}}^n}\left( u \right) - s} \right) }^ + }} \right) \end{array} \right) } du \end{aligned}$$
(38)
$$\begin{aligned}&\int _0^t {{\beta _{\mathrm{A}}}\left( {{{{{\bar{A}}}}^n}} \right) \left( u \right) du = \int _0^t {\lambda {p^b}{{\left( {{{{{\bar{Z}}}}^n}\left( u \right) - s} \right) }^ + } - \delta } } {\bar{\mathrm{A}}^n}\left( u \right) du, \end{aligned}$$
(39)

Proof of Lemma 1

To prove the C-tightness, we show that asymptotically the scaled processes \(\left\{ {{{{{\bar{Z}}}}^n}\left( \cdot \right) } \right. \left. {,{{{{\bar{A}}}}^n}\left( \cdot \right) } \right\}\) live on a compact set and have small oscillations. In addition, for the convenience of notation, let \({{\bar{X}}}_j^n\left( \cdot \right)\) simply denote the sequence of stochastic processes \(\left\{ {{{{\bar{Z}}}^n}\left( \cdot \right) ,{{{{\bar{A}}}}^n}\left( \cdot \right) } \right\}\), and \(j \in \left\{ {Z,A} \right\}\).

\(\bullet\) The compact containment condition: for any rational \(t \ge 0\) and any \(\varepsilon > 0\), there exists a compact set \({K_{\varepsilon ,t}} \subset S\) such that

$$\begin{aligned} {{\underline{\lim }} _{n \rightarrow \infty }}\mathrm{P}\left\{ {{\bar{X}}_j^n\left( t \right) \in {K_{\varepsilon ,t}}} \right\} \ge 1 - \varepsilon . \end{aligned}$$
(40)

\(\bullet\) The oscillation control : for any \(T > 0\) and \(\varepsilon > 0\), there exists a \(\eta > 0\) such that

$$\begin{aligned} {{\underline{\lim }} _{n \rightarrow \infty }}\mathrm{P}\left\{ {\omega \left( {{{\bar{X}}}_j^n,T,\eta } \right) \le \varepsilon } \right\} \ge 1 - \varepsilon . \end{aligned}$$
(41)

Where, for a function \({{\bar{X}}}_j^n\left( \cdot \right) \in D\left( {{R_ + },S} \right)\)

$$\begin{aligned} \omega \left( {\bar{X}}_{j}^{n}, T, \eta \right) =\sup \left\{ \max _{j \in \{Z, A\}}\left| {\bar{X}}_{j}^{n}(t)-{\bar{X}}_{j}^{n}(v)\right| : \quad v, t \in [0, T], \quad |v-t|<\eta \right\} . \end{aligned}$$
(42)

First, the compact containment condition in Eq. (40) follows in easing by the upper bound, which holds for the total number of customers in the system, but only with arrivals.

$$\begin{aligned} {\bar{\mathrm{Z}}^n}\left( t \right) + {{{\bar{A}}}^n}\left( t \right) \le {\bar{\mathrm{Z}}^n}\left( 0 \right) + {{{\bar{A}}}^n}\left( 0 \right) + {{\varPi _{\lambda n}^n\left( T \right) } \big / n} \end{aligned}$$

\(\varLambda ^n\left( \cdot \right)\) is a Poisson process of \(\lambda n\), so we can obtain by the law of large number (LNN),

$$\begin{aligned} {{\varLambda ^n\left( T \right) } \big / n} \Rightarrow \lambda T, \end{aligned}$$

In addition, by Assumption 1, we can show that the compact containment property in Eq. (40) indeed holds: \({{\underline{\lim }} _{n \rightarrow \infty }}\mathrm{P}\left\{ {{\bar{X}}_j^n\left( t \right) \in {K_{\varepsilon ,t}}} \right\} \ge 1 - \varepsilon\), where \({K_{\varepsilon ,t}} = \left\{ {\left( {{x_1},{x_2}} \right) \left| {{x_1} + {x_2} \le z\left( 0 \right) + a\left( 0 \right) + \lambda T{{ + }}1,{x_1},{x_2} \ge 0} \right. } \right\}\).

Second, we establish the oscillation by Eqs. (16) and (17), since \(q \le 1\), \(\left( {1 - {p^b}\left( {{{{\bar{Z}}}^n}\left( t \right) - s} \right) } \right) \le 1\), then we have the following:

$$\begin{aligned}&\left| {{{{{\bar{Z}}}}^n}\left( t \right) - {{{{\bar{Z}}}}^n}\left( v \right) } \right| \le {{\left| {\varLambda ^n\left( t \right) - \varLambda ^n\left( v \right) } \right| } \big / n} + {{\sum \limits _{J \in \left\{ {s,a} \right\} } {\left| {{{\bar{Q}}}_J^n\left( t \right) - {\bar{Q}}_J^n\left( v \right) } \right| } } \big / n}. \\&\left| {{{{{\bar{A}}}}^n}\left( t \right) - {{{{\bar{A}}}}^n}\left( v \right) } \right| \le {{\left| {\varLambda ^n\left( t \right) - \varLambda ^n\left( v \right) } \right| } \big / n} + {{\left| {{{\bar{Q}}}_A^n\left( t \right) - {{\bar{Q}}}_A^n\left( v \right) } \right| } \big / n}. \end{aligned}$$

By applying the last two bounds together, we can give the following upper bound:

$$\begin{aligned} \omega \left( {{{\bar{X}}}_j^n,T,\eta } \right) \le {{\left| {\varLambda ^n\left( t \right) - \varLambda ^n\left( v \right) } \right| } \big / n} + {{\sum \limits _{J \in \left\{ {s,a,\mathrm{A}} \right\} } {\left| {{{\bar{Q}}}_J^n\left( t \right) - {\bar{Q}}_J^n\left( v \right) } \right| } } \big / n}. \end{aligned}$$

Based on the compact containment property, we can get a finite value such that

$$\begin{aligned} \left( {{{{{\bar{Z}}}}^n}\left( u \right) ,{{{{\bar{A}}}}^n}\left( u \right) } \right) \le K,\quad u \in \left[ {0,T} \right] , as\quad n \rightarrow \infty . \end{aligned}$$

In this case, each part of \(\left( {{{{{\bar{Z}}}}^n}\left( t \right) ,{{{{\bar{A}}}}^n}\left( t \right) } \right)\) holds for \(v,t \in \left[ {0,T} \right]\). Such that \(\left| {t - v} \right| \le \eta\):

$$\begin{aligned}&\int _v^t {\mu \min \left\{ {s,{{\bar{\mathrm{Z}}}^n}\left( u \right) } \right\} du \le {r_1}\eta },\quad {r_1} = \mu s. \\&\int _v^t {\gamma '{{\left( {{{\bar{\mathrm{Z}}}^n}\left( u \right) - s} \right) }^{{ + }}}du \le {r_2}\eta },\quad {r_2} = \theta {\mathrm{K}}. \\&\int _v^t {\delta {{{{\bar{A}}}}^n}\left( u \right) du \le {r_3}\eta },\quad {r_3} = \delta {\mathrm{K}}. \end{aligned}$$

Thus, we can obtain

$$\begin{aligned}&\mathrm{P}\left( {\omega \left( {{{\bar{X}}}_j^n,T,\eta } \right) } \right) \\&\quad \ge \mathrm{P}\left( {\left\{ {{{\left| {\varLambda ^n\left( t \right) - \varLambda ^n\left( v \right) } \right| } \big / n} + {{\sum \limits _{J \in \left\{ {s,a,\mathrm{A}} \right\} } {\left| {{\bar{Q}}_J^n\left( t \right) - {{\bar{Q}}}_J^n\left( v \right) } \right| } } \big / n}} \right\} \le \varepsilon } \right) . \end{aligned}$$

Finally, we can show the oscillation control property holds which a \(\eta > 0\) such that \(\lambda \eta < {\varepsilon \big / 4}\), \({r_J}\eta < {\varepsilon \big / 4}\), where \(J \in \left( {1,2,3} \right)\).

Proof of Theorem 1

Under Assumption 1, if Lemma 1 holds, we can obtain that the limit of any convergent subsequence satisfies Eqs. (16) and (17), then the key to the proof is a unique fluid limit defined by Eqs. (16) and (17).

Next, this step of the proof could be a general result like Theorem 1 in Ding et al. (2015b). First, by Lemma 1 in Reed and Ward (2004), we can show that the mapping \(\left( {{\beta _Z}\left( {{{{{\bar{Z}}}}^n}} \right) \left( t \right) ,{\beta _A}\left( {{{{{\bar{A}}}}^n}} \right) \left( t \right) } \right)\) is Lipschitz continuous, then combine with defined Eqs. (36) and (37), we can show Eqs. (43) and (44) have a unique solution with an arbitrary n,

$$\begin{aligned} {\bar{\mathrm{Z}}^n}\left( t \right) - {\bar{\mathrm{Z}}^n}\left( 0 \right) - \int _0^t {{\beta _Z}\left( {{{{{\bar{Z}}}}^n}} \right) \left( u \right) du}= & {} 0, \end{aligned}$$
(43)
$$\begin{aligned} {{{\bar{A}}}^n}\left( t \right) - {{{\bar{A}}}^n}\left( 0 \right) - \int _0^t {{\beta _A}\left( {{{{{\bar{A}}}}^n}} \right) \left( u \right) du}= & {} 0, \end{aligned}$$
(44)

Second, we may obtain that \(\left( {{{\bar{M}}}_Z^n\left( t \right) ,{\bar{M}}_A^n\left( t \right) } \right) \Rightarrow 0\) using LLN (see, for example Theorem 5.10 in Chen and Yao , 2001). That is, it can be shown that each term in \({{\bar{M}}}_Z^n\left( t \right)\) and \({\bar{M}}_A^n\left( t \right)\) converges to 0, such that \(\left( {{\bar{M}}_Z^n\left( t \right) ,{{\bar{M}}}_A^n\left( t \right) } \right) \Rightarrow 0\). Therefore, Eqs. (16) and (17) have a unique solution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Zhao, Y., Chang, C. et al. Fluid models for customer service web chat systems with interactive automated service. Flex Serv Manuf J 35, 572–598 (2023). https://doi.org/10.1007/s10696-021-09442-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-021-09442-7

Keywords

Navigation