Skip to main content
Log in

Mathematical models for mobile network member’s coordination through coverage development-based contract

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

This study examines a mobile phone network in three models: (1) mobile network model: one mobile operator, one mobile phone manufacturer, and one mobile application developer, (2) mobile network model with application competition: one mobile operator, one mobile phone manufacturer, and two mobile application developers, (3) mobile network model with operator competition: two mobile operators, one mobile phone manufacturer, and one mobile application developers. A revenue sharing contract based on the coverage development is implemented between the operator and the mobile application developer in the first mode. Under this agreement, the operator will increase its share of the profits from the sale of the mobile application developer by increasing its coverage development rate. Some numerical examples for Iranian telecommunication companies are applied to examine the applicability of the proposed models. Finally, sensitivity analysis on the main parameters is analyzed in-depth to extract some managerial implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Megabyte.

  2. Iranian toman is equal to 10 Iranian rials (IRR).

References

  • Amrouche N, Pei Z, Yan R (2020) Mobile channel and channel coordination under different supply chain contexts. Ind Mark Manag 84:165–182

    Article  Google Scholar 

  • Andrews K, Mickahail B (2015) Business and social media: collaboration for the sixth discipline. In: Sahlin John P (ed) Social media and the transformation of interaction in society. IGI Global. https://doi.org/10.4018/978-1-4666-8556-7

  • Boyaci T, Gallego G (2004) Supply chain coordination in a market with customer service competition. Prod Oper Manag 13(1):3–22

    Article  Google Scholar 

  • Cachon GP, Lariviere MA (2005) Supply chain coordination with revenue-sharing contracts: strengths and limitations. Manag Sci 51(1):30–44

    Article  Google Scholar 

  • Cai GG (2010) Channel selection and coordination in dual-channel supply chains. J Retail 86(1):22–36

    Article  Google Scholar 

  • Chan A, McNaught KR (2008) Using Bayesian networks to improve fault diagnosis during manufacturing tests of mobile telephone infrastructure. J Oper Res Soc 59(4):423–430

    Article  Google Scholar 

  • Chasapis P, Mitropoulos S, Douligeris C (2019) A prototype mobile application for the Athens numismatic museum. Appl Comput Informatics. https://doi.org/10.1016/j.aci.2019.06.001

    Article  Google Scholar 

  • Chen X, Wang X (2015) Free or bundled: channel selection decisions under different power structures. Omega 53:11–20

    Article  Google Scholar 

  • Chen X, Wang X, Jiang X (2016a) The impact of power structure on the retail service supply chain with an O2O mixed channel. J Oper Res Soc 67(2):294–301

    Article  Google Scholar 

  • Chen X, Wang X, Chan HK (2016b) Channel coordination through subsidy contract design in the mobile phone industry. Int J Prod Econ 171:97–104

    Article  Google Scholar 

  • Cricelli L, Grimaldi M, Ghiron NL (2011) The competition among mobile network operators in the telecommunication supply chain. Int J Prod Econ 131(1):22–29

    Article  Google Scholar 

  • Fander A, Yaghoubi S, Asl-Najafi J (2021) Chemical supply chain coordination based on technology level and lead-time considerations. RAIRO-Oper Res 55(2):793–810

    Article  MathSciNet  Google Scholar 

  • Fander A, Yaghoubi S (2021) Impact of fuel-efficient technology on automotive and fuel supply chain under government intervention: a case study. Appl Math Modell 97:771–802 (in press)

    Article  MathSciNet  Google Scholar 

  • Hou Y, Wei F, Li SX, Huang Z, Ashley A (2017) Coordination and performance analysis for a three-echelon supply chain with a revenue sharing contract. Int J Prod Res 55(1):202–227

    Article  Google Scholar 

  • Hsiao MH, Chen LC (2015) Smart phone demand: an empirical study on the relationships between phone handset, Internet access and mobile services. Telematics Inform 32(1):158–168

    Article  Google Scholar 

  • Ji Z, Liu KR (2007) Cognitive radios for dynamic spectrum access-dynamic spectrum sharing: a game theoretical overview. IEEE Commun Mag 45(5):88–94

    Article  Google Scholar 

  • Jiang G, Hu B, Wang Y (2010) Agent-based simulation of competitive and collaborative mechanisms for mobile service chains. Inf Sci 180(2):225–240

    Article  MathSciNet  Google Scholar 

  • Kamal H, Coupechoux M, Godlewski P (2009) Inter-operator spectrum sharing for cellular networks using game theory. In: 2009 IEEE 20th international symposium on personal, indoor and mobile radio communications. IEEE, pp 425–429

  • Kanda A, Deshmukh SG (2008) Supply chain coordination: perspectives, empirical studies and research directions. Int J Prod Econ 115(2):316–335

    Article  Google Scholar 

  • Li T, Zhang R, Zhao S, Liu B (2019) Low carbon strategy analysis under revenue-sharing and cost-sharing contracts. J Clean Prod 212:1462–1477

    Article  Google Scholar 

  • Patra P (2018) Distribution of profit in a smart phone supply chain under green sensitive consumer demand. J Clean Prod 192:608–620

    Article  Google Scholar 

  • Poushter J (2016) Smartphone ownership and internet usage continues to climb in emerging economies. Pew Res Cent 22:1–44

    Google Scholar 

  • Qin X, Wang X, Wang L, Lin Y, Wang X (2018) An efficient probabilistic routing scheme based on game theory in opportunistic networks. Comput Netw 149:144–153

    Article  Google Scholar 

  • Qian D, Guo J (2014) Research on the energy saving and revenue sharing strategy of escos under the uncertainty of the value of energy performance contracting projects. Energy Policy 73(5):710–721

    Article  Google Scholar 

  • Song H, Gao X (2018) Green supply chain game model and analysis under revenue-sharing contract. J Clean Prod 170:183–192

    Article  Google Scholar 

  • Srivastava V, Neel JO, MacKenzie AB, Menon R, DaSilva LA, Hicks JE, Gilles RP (2005) Using game theory to analyze wireless ad hoc networks. IEEE Commun Surv Tutor 7(1–4):46–56

    Article  Google Scholar 

  • Trestian R, Ormond O, Muntean G-M (2012) Game theory-based network selection: solutions and challenges. IEEE Commun Surv Tutor 14(4):1212–1231

    Article  Google Scholar 

  • Xu J, Chen Y, Bai Q (2016) A two-echelon sustainable supply chain coordination under cap-andtrade regulation. J Clean Prod 135:42–56

    Article  Google Scholar 

  • Yang H, Chen W (2018) Retailer-driven carbon emission abatement with consumer environmental awareness and carbon tax: revenue sharing versus cost sharing. Omega 78:179–191

    Article  Google Scholar 

  • Zhao D, Chen M, Gong Y (2019) Strategic information sharing under revenue-sharing contract: explicit vs. tacit collusion in retailers. Comput Ind Eng 131:99–114

    Article  Google Scholar 

  • Zeng AZ, Hou J (2019) Procurement and coordination under imperfect quality and uncertain demand in reverse mobile phone supply chain. Int J Prod Econ 209:346–359

    Article  Google Scholar 

  • Zheng J, Cai Y, Chen X, Li R, Zhang H (2015) Optimal base station sleeping in green cellular networks: a distributed cooperative framework based on game theory. IEEE Trans Wirel Commun 14(8):4391–4406

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Yaghoubi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Optimal value of Theorem 3.1

The optimal coverage development rate and quality level of first mode are as follows.

$${{r}_{A}}^{*,1}=\frac{an{k}_{1}({c}_{A}{\eta }_{A}-{p}_{A}){h}_{C}}{{m}_{A}{\mathrm{r}}_{0}\left(-2{\mathrm{nk}}_{1}{h}_{C}+{\beta }^{2}\left(1+{u}_{C}\right)\right)}$$
(15)
$${{q}_{A}}^{*,1}=\frac{dn{k}_{1}({c}_{A}{\eta }_{A}-{p}_{A}){h}_{C}}{{s}_{A}\left(-2{\mathrm{nk}}_{1}{h}_{C}+{\beta }^{2}\left(1+{u}_{C}\right)\right)}$$
(16)

Appendix B: Optimal value of Theorem 3.2

The optimal performance and selling price of the services are calculated as follows, respectively.

$${{\mathrm{f}}_{\mathrm{C}}}^{*,1}=\frac{\upbeta {\mathrm{T}}_{1} -{\mathrm{nk}}_{1}{\mathrm{h}}_{\mathrm{C}}{\mathrm{T}}_{2}}{\left(-2{\mathrm{nk}}_{1}{\mathrm{h}}_{\mathrm{C}}+{\upbeta }^{2}\left(1+{\mathrm{u}}_{\mathrm{C}}\right)\right) \left({\mathrm{m}}_{\mathrm{A}}{\mathrm{s}}_{\mathrm{A}} \left(-3{\mathrm{nk}}_{1}\mathrm{h}+{\upbeta }^{2} \left(1 +{\mathrm{u}}_{\mathrm{C}}\right)\right)\right)}$$
(17)
$${{p}_{C}}^{*,1}=\left({\beta }^{4} {m}_{A}{s}_{A}{c}_{C}{\eta }_{C}{\left(1 +{u}_{C}\right)}^{2}+b{k}_{1}{m}_{A}{p}_{A}{s}_{A}{h}_{C}\left(-2{\mathrm{nk}}_{1}{h}_{C}+{\beta }^{2}\left(1+{u}_{C}\right)\right) +{\beta }^{2} {m}_{A}{s}_{A}h\left(1 +{u}_{C}\right)\left(-4n{c}_{C}{\eta }_{C}+\left(1 +{u}_{C}\right)\left({c}_{M}{\eta }_{M}+\gamma {p}_{A,sim}+\mathrm{L}+W\right)\theta \right) +n {{k}_{1}}^{2}{{h}_{C} }^{2}{T}_{4}\right)/\left(-2{\mathrm{nk}}_{1}{h}_{C}+{\beta }^{2}\left(1+{u}_{C}\right)\right) (1 +{u}_{C})\left({m}_{A}{s}_{A} \left(-3n{k}_{1}h+{\beta }^{2} \left(1 +{u}_{C}\right)\right)\right)$$
(18)

With:

$$T_{1} = bm_{A} p_{A} s_{A} \left( {1{ } + u_{C} } \right){ }\left( { - 2nk_{1} h + \beta^{2} { }\left( {1{ } + u_{C} } \right)} \right){ } + \beta^{2} m_{A} s_{A} \left( {1{ } + u_{C} } \right)c_{C} \eta_{C} + \gamma p_{A,sim} { }\left( {1{ } + u_{C} } \right){ } + \left( {1{ } + u_{C} } \right)\left( {c_{M} \eta_{M} + {\text{L}} + W} \right)\theta$$
(19)
$$T_{2} = - d^{2} m_{A} p_{A} \left( {1{ } + u_{C} } \right){ }\left( {1{ } + u_{C} } \right){ }{-}a^{2} { }p_{A} s_{A} \left( {1{ } + u_{C} } \right){ } + c_{C} \eta_{C} \left( {d^{2} m_{A} + a^{2} s_{A} } \right){ }\left( {1{ } + u_{C} } \right){ } + 2m_{A} s_{A} \left( {nc_{C} \eta_{C} + \gamma p_{A,sim} \left( {1{ } + u_{C} } \right){ } + \left( {1{ } + u_{C} } \right){ }\left( {c_{M} \eta_{M} + {\text{L}} + W} \right)\theta } \right)$$
(20)
$$T_{3} = d^{2} m_{A} p_{A} \left( {1{ } + u_{C} } \right){ } + a^{2} { }p_{A} s_{A} \left( {1{ } + u_{C} } \right) - c_{A} \eta_{A} \left( {d^{2} m_{A} + a^{2} s_{A} } \right){ }\left( {1{ } + u_{C} } \right){ } - 2m_{A} s_{A} \left( { - 2nc_{C} \eta_{C} + \gamma p_{A,sim} \left( {1 + u_{C} } \right){ } + \left( {1 + u_{C} } \right)\left( {c_{M} \eta_{M} + {\text{L}} + W} \right)\theta } \right)$$
(21)

Appendix C: Optimal value of Theorem 3.3

The optimal selling price of mobile phone is calculated as follows, respectively.

$${{p}_{M}}^{*,1}=\left(bn{k}_{1}{m}_{A}{p}_{A}{s}_{A}{h}_{C}(1 +{u}_{C})(-2n{k}_{1}{h}_{C}+{\beta }^{2}(1 +{u}_{C}))+{\beta }^{4}{m}_{A}{s}_{A}{(1 +{u}_{C})}^{3}({c}_{M}{\eta }_{M}+\mathrm{L}+W)\theta +{\beta }^{2}n{k}_{1}{m}_{A}{s}_{A}{h}_{C}(1 +{u}_{C})\left(n{c}_{C}{\eta }_{C}+\gamma {p}_{A,sim} (1 +{u}_{C}) -4(1 +{u}_{C})({c}_{M}{\eta }_{M}+\mathrm{L}+W)\theta \right) +{n}^{2}{{k}_{1}}^{2}{{h}_{C}}^{2}{T}_{4}\right)/\left(-2{\mathrm{nk}}_{1}{h}_{C}+{\beta }^{2}\left(1+{u}_{C}\right)\right) (1 +{u}_{C}) \left({m}_{A}{s}_{A} \left(-3n{k}_{1}h+{\beta }^{2} \left(1 +{u}_{C}\right)\right)\right)$$
(22)

With

$$T_{4} = d^{2} m_{A} p_{A} \left( {1 + u_{C} } \right) + a^{2} p_{A} s_{A} \left( {1 + u_{C} } \right) - c_{A} \eta_{A} \left( {d^{2} m_{A} + a^{2} s_{A} } \right)\left( {1 + u_{C} } \right) - 2m_{A} s_{A} \left( {nc_{C} \eta_{C} + \gamma p_{A,sim} \left( {1 + u_{C} } \right) - 2\left( {1 + u_{C} } \right)\left( {c_{M} \eta_{M} + {\text{L}} + W} \right)\theta } \right)$$
(23)

Appendix D: Optimal value of Theorem 3.4

The optimal and lonely \(\left({{f}_{D}}^{*,2},{{p}_{D}}^{*,2}\right)\) can be achieved to optimize mobile applications developer \(D\)'s expected profit.

$${{f}_{D}}^{*,2}=\frac{1}{{T}_{8}}\left((\beta +\sigma )\left({T}_{6}+b{p}_{A}(1+{u}_{D})(-(2n+3\sigma ){k }_{1}{h}_{D}+{\beta }^{2}(1+{u}_{D}) +{T}_{7}+\beta \mu \left(1+{u}_{D}\right)\left(-2\mathrm{a}{r}_{A}{r}_{0}+\mathrm{a}\alpha {r}_{A}{r}_{0}+3 n{c}_{D}{\eta }_{D}-2\mathrm{a}{r}_{A}{r}_{0}{u}_{D}+\mathrm{a}\alpha {r}_{A}{r}_{0}{u}_{D}+3\upgamma {p}_{A,sim}(1+{u}_{D}) -3d{q}_{A}(1+{u}_{D}) +3{p}_{m}\theta +3{p}_{m}\theta {u}_{D}\right)\right)\right)$$
(24)
$${{p}_{D}}^{*,2}=\frac{1}{{T}_{12}}\left({\beta }^{4}{c}_{D}{\eta }_{D}{\left(1+{u}_{D}\right)}^{2}+{T}_{9}+\beta \mu (1+{u}_{D}){T}_{10}-{k }_{1}{h}_{D}\left({T}_{11}+d{q}_{A}\left(1+{u}_{D}\right)(-(2n+3\sigma ){k }_{1}{h}_{D}+2{\mu }^{2}(1+{u}_{D}) )-2{\mu }^{2}{p}_{m}\theta +2n{k }_{1}{h}_{D}{p}_{m}\theta +3\sigma {k }_{1}{h}_{D}{p}_{m}\theta -4{\mu }^{2}{p}_{m}\theta {u}_{D}+2n{k }_{1}{h}_{D}{p}_{m}\theta {u}_{D}+3\sigma {k }_{1}{h}_{D}{p}_{m}\theta {u}_{D} -2{\mu }^{2}{p}_{m}\theta {{u}_{D}}^{2}\right)\right)$$
(25)

With

$${T}_{6}=2{\mu }^{2}\left(\upgamma {p}_{A,sim}-{q}_{A}d\right)-\mathrm{a}{\mu }^{2}{r}_{A}{r}_{0}-\left(2n+3\sigma \right)\upgamma {p}_{A,sim}{k }_{1}{h}_{D} +\left(2n+3\sigma \right)d{k }_{1}{q}_{A}{h}_{D}+2\mathrm{a}{k }_{1}{r}_{A}{r}_{0}{h}_{D}\left(n-n\alpha +\sigma \right)-\mathrm{a}\alpha \sigma {k }_{1}{r}_{A}{r}_{0}{h}_{D}+2n{\mu }^{2}{c}_{D}{\eta }_{D}-\left(2n+3\sigma \right){k }_{1}{h}_{D}{c}_{D}{\eta }_{D}+4\left(\upgamma {p}_{A,sim}-{q}_{A}{h}_{D}\right){\mu }^{2}{u}_{D}-2\mathrm{a}{\mu }^{2}{r}_{A}{r}_{0}{u}_{D} -2\upgamma {p}_{A,sim}n{k }_{1}{h}_{D}{u}_{D}-3\upgamma {p}_{A,sim}\sigma {k }_{1}{h}_{D}{u}_{D}+\left(2n+3\sigma \right)d{k }_{1}{q}_{A}{h}_{D}{u}_{D}+2\mathrm{a}n{k }_{1}\sigma {h}_{D}{u}_{D}-2\mathrm{a}\left(n\alpha -\sigma \right){k }_{1}{r}_{A}{r}_{0}{h}_{D}{u}_{D}-\mathrm{a}\alpha {k }_{1}{r}_{A}{r}_{0}{h}_{D}{u}_{D}+2n{\mu }^{2}{c}_{D}{\eta }_{D}{u}_{D}+2\upgamma {p}_{A,sim}{\mu }^{2}{{u}_{D}}^{2}-2\mathrm{ d}{\mu }^{2}\mathrm{q }{{u}_{D}}^{2}-\mathrm{a}{\mu }^{2}{r}_{A}{r}_{0}{{u}_{D}}^{2}$$
(26)
$${T}_{7}=3\beta \mu (1+{u}_{D})+2{\mu }^{2}(1+{u}_{D}))+2{\mu }^{2}{p}_{m}\theta -2n{k }_{1}{h}_{D}{p}_{m}\theta -3\sigma {k }_{1}{h}_{D}{p}_{m}\theta +4{\mu }^{2}{p}_{m}\theta {u}_{D} -2n{k }_{1}{h}_{D}{p}_{m}\theta {u}_{D}-3\sigma {k }_{1}{h}_{D}{p}_{m}\theta {u}_{D}+2{\mu }^{2}{p}_{m}\theta {{u}_{D}}^{2}+{\beta }^{2}(1+{u}_{D}) (-\mathrm{a}{r}_{A}{r}_{0}+\mathrm{a}\alpha {r}_{A}{r}_{0} +n{c}_{D}{\eta }_{D}-\mathrm{a}{r}_{A}{r}_{0}{u}_{D}+\mathrm{a}\alpha {r}_{A}{r}_{0}{u}_{D}+\upgamma {p}_{A,sim}(1+{u}_{D})-d{q}_{A}(1+{u}_{D})+{p}_{m}\theta +{p}_{m}\theta {u}_{D})$$
(27)
$${T}_{8}=({\beta }^{4}({1+{u}_{D})}^{2}+4{\beta }^{3}\mu ({1+{u}_{D})}^{2}+(2n+\sigma ){k }_{1}{h}_{D}((2n+3\sigma ){k }_{1}{h}_{D}-2{\mu }^{2}(1+{u}_{D}))+2\beta \mu (1+{u}_{D}) (-(4n+3\sigma ){k }_{1}{h}_{D}+{\mu }^{2}(1+{u}_{D}))+{\beta }^{2}(1+{u}_{D}) (-4 (n+\sigma ){k }_{1}{h}_{D}+5{\mu }^{2}(1+{u}_{D})))$$
(28)
$${T}_{9}=4{\beta }^{3}\mu {c}_{D}{\eta }_{D}{\left(1+{u}_{D}\right)}^{2}+b{k }_{1}{p}_{A}{h}_{D}(1+{u}_{D}) (-(2n+3\sigma ){k }_{1}{h}_{D} +{\beta }^{2}(1+{u}_{D})+3\beta \mu (1+{u}_{D}) +2{\mu }^{2}(1+{u}_{D}) )+{\beta }^{2}(1+{u}_{D})(-\mathrm{a}{r}_{A}{r}_{0}{h}_{D}+\mathrm{a}\alpha {r}_{A}{r}_{0}{h}_{D}+5{\mu }^{2}{c}_{D}{\eta }_{D}-3n{k }_{1}{h}_{D}{c}_{D}{\eta }_{D}-4\sigma {k }_{1}{h}_{D}{c}_{D}{\eta }_{D}-\mathrm{a}{r}_{A}{r}_{0}{u}_{D}+\mathrm{a}\alpha {r}_{A}{r}_{0}{u}_{D}+5{\mu }^{2}{c}_{D}{\eta }_{D}{u}_{D}+\upgamma {p}_{A,sim}{k }_{1}{h}_{D}(1+{u}_{D}) -d{k }_{1}{q}_{A}{h}_{D}(1+{u}_{D}) +{k }_{1}{h}_{D}{p}_{m}\theta +{k }_{1}{h}_{D}{p}_{m}\theta {u}_{D})$$
(29)
$${T}_{10}=-2\mathrm{a}{r}_{A}{r}_{0}{h}_{D}+\mathrm{a}\alpha {r}_{A}{r}_{0}{h}_{D}+2{\mu }^{2}{c}_{D}{\eta }_{D}-5n{k }_{1}{h}_{D}{c}_{D}{\eta }_{D}-6\sigma {k }_{1}{h}_{D}{c}_{D}{\eta }_{D}-2\mathrm{a}{k }_{1}{r}_{A}{r}_{0}{u}_{D}{h}_{D}+\mathrm{a}\alpha {k }_{1}{r}_{A}{r}_{0}{u}_{D}{h}_{D}+2{\mu }^{2}{c}_{D}{\eta }_{D}{u}_{D}+3\upgamma {p}_{A,sim}{k }_{1}{h}_{D}(1+{u}_{D}) -3d{k }_{1}{q}_{A}{h}_{D}(1+{u}_{D}) +3{k }_{1}{h}_{D}{p}_{m}\theta +3{u}_{D}{k }_{1}{h}_{D}{p}_{m}\theta$$
(30)
$${T}_{11}=\mathrm{a}{\mu }^{2}{r}_{A}{r}_{0}-2\mathrm{a}{k }_{1}{r}_{A}{r}_{0}{h}_{D}\left(n-n\alpha +\sigma \right)+\mathrm{a}\alpha \sigma {k }_{1}{r}_{A}{r}_{0}{h}_{D}+2n{\mu }^{2}{c}_{D}{\eta }_{D}+2\sigma {\mu }^{2}{c}_{D}{\eta }_{D}-2{n}^{2}{k }_{1}{h}_{D}{c}_{D}{\eta }_{D}-5n{k }_{1}{h}_{D}{c}_{D}{\eta }_{D}\sigma -3{\sigma }^{2}{k }_{1}{h}_{D}{c}_{D}{\eta }_{D}+2{\mu }^{2}{r}_{A}{r}_{0}{u}_{D}-2\mathrm{a}{k }_{1}{r}_{A}{r}_{0}{u}_{D}{h}_{D}\left(n-n\alpha +\sigma \right)+\mathrm{a}\alpha \sigma {k }_{1}{r}_{A}{r}_{0}{u}_{D}{h}_{D}+2{\mu }^{2}{c}_{D}{\eta }_{D}{u}_{D}\left(n+\sigma \right) +\mathrm{a}{\mu }^{2}{r}_{A}{r}_{0}{{u}_{D}}^{2}+\upgamma {p}_{A,sim}(1+{u}_{D})(-(2n+3\sigma ){k }_{1}{h}_{D}+2{\mu }^{2}(1+{u}_{D}) )$$
(31)
$$T_{12} = \left( {1 + u_{D} } \right){ }\left( {\beta^{4} \left( {1 + u_{D} } \right){ }^{2} + 4\beta^{3} \mu \left( {1 + u_{D} } \right){ }^{2} + { }\left( {2n + \sigma } \right)k _{1} h_{D} \left( {\left( {2n + 3\sigma } \right)k _{1} h_{D} - 2\mu^{2} \left( {1 + u_{D} } \right){ }} \right){ } + 2\beta \mu \left( {1 + u_{D} } \right)\left( { - \left( {4n + 3\sigma } \right)k _{1} h_{D} + { }\mu^{2} \left( {1 + u_{D} } \right)} \right) + \beta^{2} \left( {1 + u_{D} } \right)\left( { - 4{ }\left( {n + \sigma } \right)k _{1} h_{D} + 5\mu^{2} \left( {1 + u_{D} } \right)} \right)} \right)$$
(32)

Appendix E: Optimal value of Theorem 3.5

The optimal and lonely \(\left({{r}_{A}}^{*2}, {{q}_{A}}^{*,2}\right)\) can be achieved to optimize the operator \(A\)’s expected profit. The optimal coverage development rate and quality level are calculated as follows, respectively.

$${{r}_{A}}^{*,2}=\frac{1}{{\mathrm{m}}_{A}{{r}_{0}}^{2}}\left(-\frac{\left({c}_{A}{\eta }_{A}\left(n+\sigma \right){k }_{1}{h}_{D}\left(-\mathrm{a}{r}_{0}-\mathrm{a}{r}_{0}{u}_{D}\right)\right)}{\left(1+{u}_{D}\right) \left(\left(-2n-\sigma \right){k }_{1}{h}_{D}+{\beta }^{2}\left(1 +{u}_{C}\right)+\beta \mu \left(1 +{u}_{C}\right)\right)}+\frac{\left(n+\sigma \right){k }_{1}{h}_{D}{p}_{A}\left(-\mathrm{a}{r}_{0}-\mathrm{a}{r}_{0}{u}_{C}\right)}{\left(1 +{u}_{C}\right)}-\left(\left(-2n-\sigma \right){k }_{1}{h}_{C}+\beta \mu (1 +{u}_{D})+\beta \mu (1 +{u}_{D})\right)\right)-{F}_{A}$$
(33)
$${{q}_{A}}^{*,2}=\frac{1}{{s}_{A}}\left(\frac{-{c}_{A}{\eta }_{A}(n+\sigma ){k }_{1}{h}_{D} \left(-2d-2d{u}_{C}\right)}{(1 +{u}_{C}) \left((-2n-\sigma ){k }_{1}{h}_{D}+\left({\beta }^{2}+\beta \mu \right)\left(1 +{u}_{C}\right)\right)} - \frac{(n+\sigma ){k }_{1}{h}_{D}{p}_{A}(-2d-2d{u}_{D})}{(1 +{u}_{D})\left((-2n-\sigma ){k }_{1}{h}_{D}+{\beta }^{2}(1 +{u}_{C})+\beta \mu \left(1 +{u}_{D}\right)\right)}\right)$$
(34)

Appendix F: Optimal value of Theorem 3.6

Thus, the optimal and lonely \(\left({{f}_{C}}^{*,2},{{p}_{C}}^{*,2}\right)\) can be achieved to optimize application developer \(C\)'s expected profit. The optimal performance and selling price of the services are calculated as follows, respectively.

$${{f}_{C}}^{*,2}=\frac{1}{{T}_{15}}\left((\beta +\mu ) ({T}_{13}+\mathrm{b}{p}_{A}(1+{u}_{C})\left(-(2n+3\sigma ){k}_{1}{h}_{C} +{\beta }^{2}(1+{u}_{C}) +3\beta \mu (1+{u}_{C})+2{\mu }^{2}\left(1+{u}_{C}\right)\right) +{T}_{14}+{\beta }^{2}(1+{u}_{C})\left(-\mathrm{a}\alpha{r}_{A}{r}_{0}+n{c}_{C}{\eta }_{C} -\mathrm{a}\alpha{r}_{A}{r}_{0}{u}_{C}+\upgamma {p}_{A,sim}(1+{u}_{C})-d{q}_{A}(1+{u}_{C})+{p}_{m}\theta +{p}_{m}\theta {u}_{C}\right)\right)$$
(35)
$${{p}_{C}}^{*,2}=\frac{1}{{T}_{15}}\left({\beta }^{3}{\left(1+{u}_{C}\right)}^{2}{c}_{C}{\eta }_{C}(\beta +4\mu )+b{k}_{1}{p}_{A}{h}_{C}(1+{u}_{C})\left(-(2n +3\sigma ){k}_{1}{h}_{C}+{\beta }^{2}(1+{u}_{C})(\beta +3\mu )+2 {\mu }^{2}\left(1+{u}_{C}\right)\right)+{T}_{16}+{k}_{1}{h}_{C}{T}_{17}\right)$$
(36)

with

$${T}_{13}=\upgamma {p}_{A,sim}{\mu }^{2}-\mathrm{a}{\mu }^{2}\left({r}_{A}{r}_{0}+d{q}_{A}\right)- \left(2n+3\sigma \right){k}_{1}{h}_{C}\left(\upgamma {p}_{A,sim}+d{q}_{A}\right) +\mathrm{a}{k}_{1}{r}_{A}{r}_{0}{h}_{C}\left(2{\alpha }n+\sigma +{\alpha }\sigma \right)\left(1+{u}_{C}\right)+2n{\mu }^{2}{c}_{C}{\eta }_{C} -\left(2n+3\sigma \right){k}_{1}{h}_{C}{c}_{C}{\eta }_{C} +4\upgamma {p}_{A,sim}{\mu }^{2}{u}_{C}\left(\upgamma {p}_{A,sim}-d{q}_{A}\right)-2\mathrm{a}{\mu }^{2}{r}_{A}{r}_{0}{u}_{C}-\left(2n+3\sigma \right)\upgamma {p}_{A,sim}{k}_{1}{h}_{C}{u}_{C}\left(-\upgamma {p}_{A,sim}-d{q}_{A}\right)+2n{\mu }^{2}{c}_{C}{\eta }_{C}{u}_{C}+ 2\upgamma {p}_{A,sim}{\mu }^{2}{{u}_{C}}^{2} -2d{\mu }^{2}{q}_{A}{{u}_{C}}^{2}-\mathrm{a}{\mu }^{2}{r}_{A}{r}_{0}{{u}_{C}}^{2}$$
(37)
$${T}_{14}=2{\mu }^{2}{p}_{m}\theta -\left(2n+3\sigma \right){\left(1+{u}_{C}\right)k}_{1}{p}_{m}{h}_{C}\theta +4{\mu }^{2}{p}_{m}{u}_{C}\theta +2{\mu }^{2}{p}_{m}{{u}_{C}}^{2}\theta -\beta \mu (1+{u}_{C})\left(\left(\mathrm{a}{r}_{A}{r}_{0}+\mathrm{a}\alpha{r}_{A}{r}_{0}\right)(1+{u}_{C})-3n{c}_{C}{\eta }_{C}-3\upgamma {p}_{A,sim}(1+{u}_{C}) +\left(3d{q}_{A}-3{p}_{m}\theta \right)(1+{u}_{C})\right)$$
(38)
$${T}_{15}={\beta }^{4}{\left(1+{u}_{C}\right)}^{2}+4{\beta }^{3}\mu {(1+{u}_{C})}^{2}+ (2n +\sigma ){k}_{1}{h}_{C}((2 n+3\sigma ){k}_{1}{h}_{C}-2{\mu }^{2}(1+{u}_{C}))+2\beta \mu (1+{u}_{C}) (-(4n+3\sigma ){k}_{1}{h}_{C}+{\mu }^{2}(1+{u}_{C})) +{\beta }^{2}(1+{u}_{C})(-4 (n+\sigma ){k}_{1}{h}_{C}+5{\mu }^{2}(1+{u}_{C}))$$
(39)
$${{T}_{16}=\beta }^{2}(1+{u}_{C})\left(-\mathrm{a}\alpha{k}_{1}{r}_{A}{r}_{0}{h}_{C}+ 5{\mu }^{2}{c}_{C}{\eta }_{C}(1+{u}_{C})-(3n{k}_{1}+4\sigma ){h}_{C}{c}_{C}-\mathrm{a}\alpha{k}_{1}{r}_{A}{r}_{0}{h}_{C}{u}_{C}+\upgamma {p}_{A,sim}{k}_{1}{h}_{C}(1+{u}_{C}) -d{k}_{1}{q}_{A}{h}_{C}(1+{u}_{C}){k}_{1}{p}_{m}{h}_{C}\theta +{k}_{1}{p}_{m}{h}_{C}\theta {u}_{C}\right)+\beta \mu (1+{u}_{C})\left(-\mathrm{a}{k}_{1}{r}_{A}{r}_{0}{h}_{C}(1+{\alpha })+2{\mu }^{2}{c}_{C}{\eta }_{C} -(5n+6\sigma {k}_{1}){h}_{C}{c}_{C}{\eta }_{C}-\mathrm{a}{k}_{1}{r}_{A}{r}_{0}{u}_{C}(1+{h}_{C})+2{\mu }^{2}{c}_{C}{\eta }_{C}{u}_{C}+3\upgamma {p}_{A,sim}{k}_{1}{h}_{C}(1+{u}_{C}) -d{k}_{1}{q}_{A}{h}_{C}(1+{u}_{C})+3{k}_{1}{p}_{m}{h}_{C}\theta (1+{u}_{C})\right)$$
(40)
$${T}_{17}=-\mathrm{a}{\mu}^{2}{r}_{A}{r}_{0}+ 2\mathrm{a}\alpha {k}_{1}{r}_{A}{r}_{0}{h}_{C} +\mathrm{a}\alpha{k}_{1}{r}_{A}{r}_{0}{h}_{C}+\mathrm{a}\alpha{k}_{1}{r}_{A}{r}_{0}{h}_{C}\sigma -2n{c}_{C}{\eta }_{C}-2\sigma {\mu }^{2}{c}_{C}{\eta }_{C} +2{n}^{2}{k}_{1}{h}_{C}{c}_{C}{\eta }_{C}+5n\sigma {k}_{1}{h}_{C}{c}_{C}{\eta }_{C}+3{\sigma }^{2}{k}_{1}{h}_{C}{c}_{C}{\eta }_{C}-2\mathrm{a}{\mu }^{2}{r}_{A}{r}_{0}{u}_{C}+2\mathrm{a}\alpha{k}_{1}{r}_{A}{r}_{0}{h}_{C}{u}_{C}n+\mathrm{a}\sigma {k}_{1}{h}_{C}{r}_{A}{r}_{0}+\mathrm{a}\alpha{k}_{1}{r}_{A}{r}_{0}{h}_{C}\sigma {\eta }_{C}{u}_{C} -2n{\mu }^{2}{c}_{C}{\eta }_{C}{u}_{C}-2\sigma {\mu }^{2}{c}_{C}{\eta }_{C}{u}_{C}-\mathrm{a}{\mu }^{2}{r}_{A}{r}_{0}{{u}_{C} }^{2}+\upgamma {p}_{A,sim}(1+{u}_{C})(-(2n+3\sigma ){k}_{1}{h}_{C}+2{\mu }^{2}(1+{u}_{C}))-d{q}_{A}(1+{u}_{C})(-(2n+3\sigma ){k}_{1}{h}_{C}+2{\mu }^{2}(1+{u}_{C}))+2{\mu }^{2}{p}_{m}\theta -2n{k}_{1}{p}_{m}{h}_{C}\theta -3\sigma {k}_{1}{p}_{m}{h}_{C}\theta +4{\mu }^{2}{p}_{m}\theta {u}_{C}-2n{k}_{1}{p}_{m}{h}_{C}\theta {u}_{C} -3\sigma {k}_{1}{p}_{m}{h}_{C}\theta {u}_{C} +2{\mu }^{2}{p}_{m}\theta {{u}_{C} }^{2})$$
(41)

Appendix G: Optimal value of Theorem 3.7

The optimal and exclusive \({{(p}_{M}}^{*,2})\) can be achieved to optimize mobile phones manufacturer \(M\)'s expected profit. The optimal selling price of mobile phone is calculated as follows, respectively.

$${{p}_{M}}^{*,2}= \frac{1}{4\left(1+{u}_{D}\right)\theta }(2d{q}_{A}+\mathrm{a}{r}_{0}{r}_{A}-2n{c}_{C}{\eta }_{C}-2n{c}_{D}{\eta }_{D}+2d{q}_{A}{u}_{C}+\mathrm{a}{r}_{0}{r}_{A}{u}_{D}-2b{p}_{A}(1 +{u}_{C})-2\upgamma {p}_{A,sim}(1+{u}_{D})+2{c}_{M}{\eta }_{M}\theta +2\mathrm{L}\theta +2{c}_{M}{\eta }_{M}\theta {u}_{C}+2{c}_{M}{\eta }_{M}\theta {u}_{D}+2\mathrm{L}\theta {u}_{C}+2\mathrm{L}\theta {u}_{D}+2W\theta +2W\theta {u}_{C}+2W\theta {u}_{D})$$
(42)

Appendix H: Optimal value of Theorem 3.8

The optimal and exclusive \(\left({{r}_{B}}^{*,2},{{q}_{B}}^{*,2}\right)\) can be achieved to optimize the mobile operator \(B\)'s expected profit.

$${{r}_{B}}^{*,3}=\frac{1}{4({m}_{B}){{r}_{0}}^{2}\left(-n{k }_{1}{h}_{C}+{\beta }^{2}(1+{u}_{C})\right)}\left(n{k }_{1}{h}_{C}(4 (-1+\alpha ){p}_{B,sim}-D({c}_{B}{\eta }_{B}-{p}_{B})(3\mathrm{a}(-1+\alpha ){r}_{0}-4\varepsilon ))+2{\beta }^{2}(1+{u}_{C})\left(-2 (-1+\alpha ){p}_{B,sim}+D({c}_{B}{\eta }_{B}-{p}_{B})(\mathrm{a }(-1+\alpha ){r}_{0} -2\varepsilon )\right)\right)$$
(43)
$${{q}_{B}}^{*,3}=-\left(\frac{\left({c}_{B}{\eta }_{B}-{p}_{B}\right)\left(-n{k }_{1}\left(3d+4\varepsilon \right){h}_{C}+2{\beta }^{2}\left(d+2\varepsilon \right)\left(1+{u}_{C}\right)\right)}{4{s}_{B}\left(-n{k }_{1}{h}_{C}+ {\beta }^{2}\left(1+{u}_{C}\right)\right)}\right)$$
(44)

Appendix I: Optimal value of Theorem 3.9

The optimal coverage development rate and quality level are calculated as follows, respectively.

$${{r}_{A}}^{*,3}=\frac{1}{4({m}_{A}){{r}_{0}}^{2}}\left(\alpha \left(\frac{4 {p}_{A,sim}}{D}+2\mathrm{a}\left(-{c}_{A}{\eta }_{A}+{p}_{A}\right){r}_{0}+\frac{\mathrm{a}n{k }_{1}\left(-{c}_{B}{\eta }_{B}+{p}_{B}\right){r}_{0}{h}_{C}}{n{k }_{1}{h}_{C}-{\beta }^{2}(1+{u}_{C})}\right)+4\left(-{c}_{A}{\eta }_{A}+{p}_{A}\right)\varepsilon \right)$$
(45)
$${{q}_{A}}^{*,3}=\frac{1}{{s}_{A}}\left(\frac{-{c}_{A}{\eta }_{A}(n+\sigma ){k }_{1}{h}_{D} \left(-2d-2d{u}_{C}\right)}{(1 +{u}_{C}) \left((-2n-\sigma ){k }_{1}{h}_{D}+\left({\beta }^{2}+\beta \mu \right)\left(1 +{u}_{C}\right)\right)} - \frac{(n+\sigma ){k }_{1}{h}_{D}{p}_{A}(-2d-2d{u}_{D})}{(1 +{u}_{D})\left((-2n-\sigma ){k }_{1}{h}_{D}+{\beta }^{2}(1 +{u}_{C})+\beta \mu \left(1 +{u}_{D}\right)\right)}\right)$$
(46)

Appendix J: Optimal value of Theorem 3.10

The optimal and exclusive \(\left({{f}_{C}}^{*,3},{{p}_{C}}^{*,3}\right)\) can be obtained to optimize application developer \(C\)'s expected profit. The optimal performance and selling price of the services are calculated as follows, respectively.

$${{f}_{C}}^{*,3}= \frac{1}{(16D{m}_{A}{s}_{A}{r}_{0}+8D{m}_{B}{p}_{B}{r}_{0}){(n{k }_{1}{h}_{C}-{ \beta }^{2}(1+{u}_{C}))}^{2}}\left(2{ \beta }^{3}(1 +{u}_{C}){T}_{18}-\beta n{k }_{1}{h}_{C}(-6{d}^{2}D{m}_{B}{p}_{B}{r}_{0}(1+{u}_{C}) -8dD{m}_{B}\updelta {p}_{B}{r}_{0}(1+{u}_{C})+{c}_{B}{\eta }_{B}D(1+{u}_{C}){T}_{19}\right)$$
(47)
$${{p}_{C}}^{*,3}=\frac{1}{32D{m}_{A}{s}_{A}{r}_{0}(1+{u}_{C}){(n{k }_{1}{h}_{C}- {\beta }^{2}(1+{u}_{C}))}^{2}}\left(32{ \beta }^{4}D{m}_{A}{s}_{A}{r}_{0}{c}_{C}{\eta }_{C}{\left(1+{u}_{C}\right)}^{2}+2{ \beta }^{2}{k }_{1}{h}_{C}(1+{u}_{C}) {T}_{20}+n{{k }_{1}}^{2}{{h}_{C}}^{2}\left(6{ d }^{2}{m}_{A}{p}_{A}{r}_{0}D(1+{u}_{C}) +8dD{m}_{B}\updelta {p}_{B}{r}_{0}(1+{u}_{C})-{c}_{B}{\eta }_{B}D(1+{u}_{C})\left(6{ d }^{2}{m}_{B}{r}_{0}+ 8D{m}_{B}\updelta {r}_{0}+\mathrm{a}{s}_{B}(3\mathrm{a}(1+2((-1+\alpha )\alpha ){r}_{0}+4\varepsilon ))+{s}_{B}{T}_{21}\right)\right)\right)$$
(48)

With

$${T}_{18}=-2{d}^{2}D{m}_{A}{p}_{A}{r}_{0}(1+{u}_{C})-4dD{m}_{A}\updelta {p}_{A}{r}_{0}(1+{u}_{C}) +{c}_{A}{\eta }_{A}D(1+{u}_{C})(2d{m}_{A}(d+2\updelta ){r}_{0}+{a}^{2}(1+2 (-1+\alpha )\alpha ){r}_{0}{\mathrm{s}}_{A}+2{\mathrm{as}}_{A}\varepsilon ) +{\mathrm{s}}_{B}(-{a}^{2}(1 + 2 (-1+\alpha )\alpha )D{p}_{B}{r}_{0}(1+{u}_{C})-2\mathrm{a}(1+{u}_{C})({p}_{A,sim}+{p}_{B,sim}+2(-1+\alpha )\alpha ({p}_{A,sim}+{p}_{B,sim})+D{p}_{B}\varepsilon ) +4D{m}_{B}{p}_{B}{r}_{0}((n{c}_{C}{\eta }_{C}+(d{p}_{A}+d\alpha {p}_{B})(1+{u}_{C}) +(\gamma {p}_{A,sim}+\gamma \alpha {p}_{B,sim})(1+{u}_{C}))+(1+{u}_{C})({c}_{M}{\eta }_{M}+\mathrm{L}+W)\theta ))$$
(49)
$${T}_{19}=6{d}^{2}{m}_{A}{r}_{0}+8d{m}_{B}\updelta {r}_{0}+{\mathrm{as}}_{B}(3\mathrm{a }(1 + 2 (-1+\alpha )\alpha ){r}_{0}+4\varepsilon )) +{\mathrm{s}}_{B}\left(-3{a}^{2}(1 + 2 (-1+\alpha )\alpha )D{p}_{B}{r}_{0}(1+{u}_{C}) -4\mathrm{a}(1+{u}_{C})({p}_{A,sim} +2(-1+\alpha )\alpha {p}_{B,sim}+D{p}_{B}\varepsilon ) +D{m}_{B}{r}_{0}\left(\left(n{c}_{C}{\eta }_{C}+b{p}_{A}(1+{u}_{C}) +(\gamma {p}_{A,sim}+\gamma \alpha {p}_{B,sim})(1+{u}_{C})\right) + (1+{u}_{C})\left({c}_{M}{\eta }_{M}+\mathrm{L}+W\right)\theta \right)\right)$$
(50)
$${T}_{20}=-2{ d }^{4}{m}_{A}{p}_{A}{r}_{0}D(1+{u}_{C}) -4dD{m}_{A}\updelta {p}_{A}{r}_{0}(1+{u}_{C})+{c}_{A}{\eta }_{A}D(1+{u}_{C})(2dD{m}_{B}(d+2\updelta ){r}_{0}+{ a }^{2}(1 +2(-1+\alpha )\alpha ){r}_{0}{s}_{B}+2\mathrm{a}{s}_{B}\varepsilon ) -{s}_{B}({ a }^{2}(1 + 2 ((-1+\alpha )\alpha ){p}_{B}{r}_{0}D(1+{u}_{C})+2a(1+{u}_{C})({p}_{B,sim}+{p}_{A,sim}+ 2 (-1+\alpha )\alpha {p}_{A,sim}+{p}_{B}{r}_{0}D\varepsilon ) +4D{m}_{B}{r}_{0}(-(-7n{c}_{C}{\eta }_{C}+b{p}_{B}(1+{u}_{C})+(\gamma {p}_{A,sim}+\gamma \alpha {p}_{B,sim})(1+{u}_{C})) -(1+{u}_{C})({c}_{M}{\eta }_{M}+\mathrm{L}+W)\theta ))$$
(51)
$$T_{21} = 3{ }a{ }^{2} \left( {1{ } + { }2\left( { - 1 + \alpha } \right)\alpha } \right)Dp_{B} r_{0} \left( {1 + u_{C} } \right) + 4{\text{a}}\left( {1 + u_{C} } \right){ }\left( {p_{B,sim} + p_{A,sim} + 2{ }\left( { - 1 + \alpha } \right)\alpha \left( {p_{B,sim} + p_{A,sim} } \right) + Dp_{B} \varepsilon } \right){ } + 8m_{A} r_{0} \left( { - \left( { - 3c_{C} \eta_{C} + bp_{B} \left( {1 + u_{C} } \right) + \gamma \alpha p_{B,sim} \left( {1 + u_{C} } \right)} \right) - \left( {1 + u_{C} } \right)\left( {c_{M} \eta_{M} + {\text{L}} + W} \right)\theta } \right)$$
(52)

Appendix K: Optimal value of Theorem 3.11

The optimal selling price of mobile phone is calculated as follows, respectively.

$${{p}_{M}}^{*,3}=\frac{1}{16D{m}_{B}{s}_{B}{r}_{0}(1+{u}_{C})\left(-n{k }_{1}{h}_{C}+ {\beta }^{2}\left(1+{u}_{C}\right)\right)\theta }\left(-2{\beta }^{2}(1+{u}_{C}){T}_{22}+n{k }_{1}{h}_{C}(-6{d }^{2}D{m}_{B}{p}_{B}{r}_{0}(1+{u}_{C})-8dD{m}_{A}\updelta {p}_{B}{r}_{0}(1+{u}_{C})+{c}_{B}{\eta }_{B}D(1+{u}_{C})\left(6{d }^{2}{m}_{A}{r}_{0} +8dD{m}_{A}\updelta {p}_{B}{r}_{0} +\mathrm{a}{s}_{B}(3\mathrm{a}(1 + 2 (-1+\alpha )\alpha ){r}_{0}+4\varepsilon ))-{s}_{B}{T}_{23}\right)\right)$$
(53)

with

$${T}_{22}=-2 {d }^{2}D{m}_{A}{p}_{A}{r}_{0}(1+{u}_{C}) -4dD{m}_{A}{p}_{A}{r}_{0}\varepsilon (1+{u}_{C})+{c}_{A}{\eta }_{A}D(1+{u}_{C})(2d{m}_{B}(d+2\varepsilon ){r}_{0}+{a }^{2}(1 +2 (-1+\alpha )\alpha ){r}_{0}{s}_{B}+2\mathrm{a}{s}_{A}\updelta )-\mathrm{s}({a }^{2}(1 + 2 (-1+\alpha )\alpha )D{p}_{B}{r}_{0}(1+{u}_{C})+2\mathrm{a}(1+{u}_{C}) ({p}_{A,sim}+2(-1+\alpha )\alpha {p}_{B,sim}+D{p}_{A}\upvarepsilon )+4D{m}_{A}{r}_{0}(-(n{c}_{C}{\eta }_{C}+\mathrm{b}{p}_{B}(1+{u}_{C})+\gamma {p}_{A,sim}(1+{u}_{C}))+(1+{u}_{C})({c}_{M}{\eta }_{M}+\mathrm{L}+W)\theta ))$$
(54)
$${T}_{23}=3{a }^{2}(1 + 2 (-1+\alpha )\alpha )D{p}_{A}{r}_{0}(1+{u}_{C})+4\mathrm{a }(1+{u}_{C}) ({p}_{A,sim}+2(-1+\alpha )\alpha {p}_{B,sim} +D{p}_{B}\varepsilon ) +8D{m}_{A}{r}_{0}(-(n{c}_{C}{\eta }_{C}+\mathrm{b}{p}_{A}(1+{u}_{C})+\gamma {p}_{B,sim}(1+{u}_{C}))+(1+{u}_{C})({c}_{M}{\eta }_{M}+\mathrm{L}+W)\theta )$$
(55)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fander, A., Yaghoubi, S. Mathematical models for mobile network member’s coordination through coverage development-based contract. Flex Serv Manuf J 34, 670–708 (2022). https://doi.org/10.1007/s10696-021-09421-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-021-09421-y

Keywords

Navigation