Skip to main content
Log in

Optimal pricing with free gift cards in a two-product supply chain

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

We develop a model of free gift card promotions in a two-product supply chain. We analyze three cases with different gift card strategies based on whether the wholesale and retail prices are changed or unchanged. The results indicate that, in the strategy of unchanged wholesale and retail prices, the retailer and two manufacturers are better off. The gift card promotions can effectively stimulate the demands of two products. We find that the two manufacturers benefit more from the gift card promotion than the retailer does. In the strategy of unchanged wholesale prices and changed retail prices, if the gift card value is not very large, the retailer’s profit margins and average consumer surplus from the gift card promotion are increasing in the gift card value. In the strategy of changed wholesale and retail prices, the retailer and two manufacturers have an incentive to raise the retail and wholesale prices under certain conditions. Furthermore, we show that, keeping the prices at the level of no gift cards is the dominant strategy for the supply chain and consumers, and the difference between retail prices and wholesale prices of two products is the key factor in determining the gift card value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Source: https://help.target.com/help/subcategoryarticle?childcat=Current+Promotions&parentcat=Promotions+%26+Coupons&searchQuery=search+help.

References

  • Anderson ET, Song I (2004) Coordinating price reductions and coupon events. J Mark Res 41(4):411–422

    Article  Google Scholar 

  • Andrews M, Luo X, Fang Z, Aspara J (2014) Cause marketing effectiveness and the moderating role of price discounts. J Mark 78(6):120–142

    Article  Google Scholar 

  • Aviv Y, Pazgal A (2008) Optimal pricing of seasonal products in the presence of forward-looking consumers. Manuf Serv Oper Manag 10(3):339–359

    Article  Google Scholar 

  • Besanko D, Winston WL (1990) Optimal price skimming by a monopolist facing rational consumers. Manag Sci 36(5):555–567

    Article  MathSciNet  MATH  Google Scholar 

  • Bhargava HK (2013) Mixed bundling of two independently valued goods. Manag Sci 59(9):2170–2185

    Article  Google Scholar 

  • Cai GG (2010) Channel selection and coordination in dual-channel supply chains. J Retail 86(1):22–36

    Article  Google Scholar 

  • Chao Y, Derdenger T (2013) Mixed bundling in two-sided markets in the presence of installed base effects. Manag Sci 59(8):1904–1926

    Article  Google Scholar 

  • Chen Y, Moorthy S, Zhang ZJ (2005) Price discrimination after the purchase: a note on rebates as state-dependent discounts. Manag Sci 51(7):1131–1140

    Article  Google Scholar 

  • Chew EP, Lee LH, Wang Q (2015) Mixed bundle retailing under a stochastic market. Flex Serv Manuf J 27(4):606–629

    Article  Google Scholar 

  • Consumer Reports (2014) Target gives you 50 reasons to get an Apple iPad. Retrieved October 20, 2016. http://www.consumerreports.org/cro/news/2014/08/target-gives-you-50-reasons-to-get-an-apple-ipad/index.htm

  • Dhar SK, Morrison DG, Raju JS (1996) The effect of package coupons on brand choice: an epilogue on profits. Mark Sci 15(2):192–203

    Article  Google Scholar 

  • Ernez-Gahbiche I, Hadjyoussef K, Dogui A, Jemai Z (2019) Decentralized versus cooperative performances in a Nash game between a customer and two suppliers. Flex Serv Manuf J 31(2):279–307

    Article  MATH  Google Scholar 

  • Geng Q, Mallik S (2011) Joint mail in rebate decisions in supply chains under demand uncertainty. Prod Oper Manag 20(4):587–602

    Article  Google Scholar 

  • Helion C, Gilovich T (2014) Gift cards and mental accounting: green lighting hedonic spending. J Behav Dec Mak 27(4):386–393

    Google Scholar 

  • Horne DR (2007a) Gift cards: disclosure one step removed. J Consum Affairs 41(2):341–345

    Article  Google Scholar 

  • Horne DR (2007b) Unredeemed gift cards and the problem of not providing customers with value. J Consum Mark 24(4):192–193

    Article  Google Scholar 

  • Horne DR (2013) Patterns of gift card non-redemption. Consum Interests Annu 59:1–5

    Google Scholar 

  • Horne DR, Bendle N (2016) Gift cards: a review and research agenda. Int Rev Retail Distrib Consum Res 26(2):154–170

    Google Scholar 

  • Khouja M, Pan J, Brian TR, Zhou J (2011) Analysis of free gift card program effectiveness. J Retail 87(4):444–461

    Article  Google Scholar 

  • Khouja M, Pan J, Zhou J (2016) Effects of gift cards on optimal order and discount of seasonal products. Eur J Oper Res 248(1):159–173

    Article  MathSciNet  MATH  Google Scholar 

  • Khouja M, Park S, Zhou J (2013a) A free gift card alternative to price discounts in the newsvendor problem. Omega 41(4):665–678

    Article  Google Scholar 

  • Khouja M, Rajagopalan HK, Zhou J (2013b) Analysis of the effectiveness of manufacturer sponsored retailer gift cards in supply chains. Eur J Oper Res 230(2):333–347

    Article  MathSciNet  MATH  Google Scholar 

  • Khouja M, Zhou J (2015) Channel and pricing decisions in a supply chain with advance selling of gift cards. Eur J Oper Res 244(2):471–489

    Article  MathSciNet  MATH  Google Scholar 

  • Li Y, Pan J, Tang X (2021) Optimal strategy and cost sharing of free gift cards in a retailer power supply chain. Int Trans Oper Res 28(2):1018–1045

    Article  MathSciNet  Google Scholar 

  • Lu Q, Moorthy S (2007) Coupons versus rebates. Mark Sci 26(1):67–82

    Article  Google Scholar 

  • Mandel N, Scott ML, Kim S, Sinha RK (2017) Strategies for improving self-control among naïve, sophisticated, and time-consistent consumers. J Econ Psychol 60:109–125

    Article  Google Scholar 

  • Mussa M, Rosen S (1978) Monopoly and product quality. J Econ Theory 18(2):301–317

    Article  MathSciNet  MATH  Google Scholar 

  • Narasimhan C (1984) A price discrimination theory of coupons. Mark Sci 3(2):128–147

    Article  Google Scholar 

  • Neslin SA, Shoemaker RW (1983) A model for evaluating the profitability of coupon promotions. Mark Sci 2(4):361–380

    Article  Google Scholar 

  • Norvell T, Horky A (2017) Gift card program incrementality and cannibalization: the effect on revenue and profit. J Retail Consum Serv 39:250–257

    Article  Google Scholar 

  • Prasad A, Venkatesh R, Mahajan V (2010) Optimal bundling of technological products with network externality. Manag Sci 56(12):2224–2236

    Article  MATH  Google Scholar 

  • Rubin AP, Benton WC (2003) A generalized framework for quantity discount pricing schedules. Dec Sci 34(1):173–188

    Article  Google Scholar 

  • Soman D (1998) The illusion of delayed incentives: evaluating future effort-money transaction. J Mark Res 35(4):427–437

    Google Scholar 

  • Stokey NL (1979) Intertemporal price discrimination. Q J Econ 93(3):355–371

    Article  MathSciNet  MATH  Google Scholar 

  • Waldfogel J (1993) The deadweight loss of Christmas. Am Econ Rev 83(5):1328

    Google Scholar 

  • Waldfogel J (2009) Scroogenomics: why you shouldn’t buy presents for the holidays. Princeton University Press, Princeton

    Book  Google Scholar 

  • Weng ZK (1995) Channel coordination and quantity discounts. Manag Sci 41(9):1509–1522

    Article  MATH  Google Scholar 

  • Wolf A (2007) The gift that keeps on giving. Consum Electron 22:85

    Google Scholar 

  • Yao Q, Chen R (2014) Gift cards and gifted cash: the impact of fit between gift type and message construal. J Retail 90(4):481–492

    Article  Google Scholar 

  • Zhang Q, Zhang D, Segerstedt A, Luo J (2018) Optimal ordering and pricing decisions for a company issuing product-specific gift cards. Omega 74:92–102

    Article  Google Scholar 

Download references

Acknowledgements

The authors are extremely grateful to the anonymous reviewers and the Department Editor for their constructive comments and suggestions, which have greatly improved the exposition of this paper. This work was supported by the National Natural Science Foundation of China (Grant Nos. 71531003 and 71272127) and the China Scholarship Council (Grant No. 201806070094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingming Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof

Proposition 1

Substituting Eqs. (1) and (2) into Eq. (4), we have

$$\begin{aligned} \pi _r^{NG}(p_1,p_2)=\frac{n(a_1-p_1)(p_1-w_1)}{a_1}+\frac{n(a-2-p_2)(p_2-w_2)}{a_2}. \end{aligned}$$

Taking the first and second derivations of \(\pi _r^{NG}(p_1,p_2)\), we have

$$\begin{aligned} \frac{\partial \pi _r^{NG}(p_1,p_2)}{\partial p_1}=\frac{n(a_1+w_1-2p_1)}{a_1}, \, \frac{\partial ^2 \pi _r^{NG}(p_1,p_2)}{\partial p_1^2}= & {} -\frac{2n}{a_1},\\ \frac{\partial \pi _r^{NG}(p_1,p_2)}{\partial p_2}=\frac{n(a_2+w_2-2p_2)}{a_2},\, and \; \frac{\partial ^2 \pi _r^{NG}(p_1,p_2)}{\partial p_2^2}= & {} -\frac{2n}{a_2}. \end{aligned}$$

Then, the Hessian matrix is

$$\begin{aligned} H=\left[ \begin{array}{cc} \frac{\partial ^2 \pi _r^{NG}(p_1,p_2)}{\partial p_1^2} &{} \frac{\partial ^2 \pi _r^{NG}(p_1,p_2)}{\partial p_1 \partial p_2} \\ \frac{\partial ^2 \pi _r^{NG}(p_1,p_2)}{\partial p_1 \partial p_2} &{} \frac{\partial ^2 \pi _r^{NG}(p_1,p_2)}{\partial p_2^2} \\ \end{array}\right] =\left[ \begin{array}{cc} -\frac{2n}{a_1} &{} 0 \\ 0 &{} -\frac{2n}{a_2} \\ \end{array}\right] . \end{aligned}$$

Since \(|H_1|=-\frac{2n}{a_1}<0\) and \(|H_2|=\frac{4n^2}{a_1a_2}>0\), then \(\pi _r^{NG}\) is jointly concave in \(p_1\) and \(p_2\). From the first-order-condition, the optimal retailer prices are given by \(p_1^*(w_1)=\frac{a_1+w_1}{2}\) and \(p_2^*(w_2)=\frac{a_2+w_2}{2}\).

Substituting Eq. (1) and \(p_1^*(w_1)\) into Eq. (5), we have

$$\begin{aligned} \pi _{m1}^{NG}(w_1)=\frac{n}{2a_1}(a_1-w_1)w_1. \end{aligned}$$

Taking the first and second derivations of \(\pi _{m1}^{NG}(w_1)\) , we have \(\frac{\partial \pi _{m1}^{NG}(w_1)}{\partial w_1}=\frac{n(a_1-2w_1)}{2a_1}\) and \(\frac{\partial ^2 \pi _{m1}^{NG}(w_1)}{\partial w_1^2}=-\frac{n}{a_1}\). Since \(\frac{\partial ^2 \pi _{m1}^{NG}(w_1)}{\partial w_1^2}<0\), then \(\pi _{m1}^{NG}(w_1)\) is concave in \(w_1\). From \(\frac{\partial \pi _{m1}^{NG}(w_1)}{\partial w_1}=0\), we get the optimal wholesale price of product 1 \(w_1^{NG*}=a_1/2\). Then, we get the optimal retail price of product 1 \(p_1^{NG*}=3a_1/4\).

Substituting Eq. (2) and \(p_2^*(w_2)\) into Eq. (6), we have

$$\begin{aligned} \pi _{m2}^{NG}(w_2)=\frac{n}{2a_2}(a_2-w_2)w_2. \end{aligned}$$

Taking the first and second derivations of \(\pi _{m2}^{NG}(w_2)\) , we have \(\frac{\partial \pi _{m2}^{NG}(w_2)}{\partial w_2}=\frac{n(a_2-2w_2)}{2a_2}\) and \(\frac{\partial ^2 \pi _{m2}^{NG}(w_2)}{\partial w_2^2}=-\frac{n}{a_2}\). Since \(\frac{\partial ^2 \pi _{m2}^{NG}(w_2)}{\partial w_2^2}<0\), then \(\pi _{m2}^{NG}(w_2)\) is concave in \(w_2\). From \(\frac{\partial \pi _{m2}^{NG}(w_2)}{\partial w_2}=0\), we get the optimal wholesale price of product 2 \(w_2^{NG*}=a_2/2\). Then, we get the optimal retail price of product 2 \(p_2^{NG*}=3a_2/4\). \(\square\)

Proof

Proposition 2

Substituting \(w_1=a_1/2\), \(w_2=a_2/2\), \(p_1=3a_1/4\) and \(p_2=3a_3/4\) into Eq. (10), we have

$$\begin{aligned} \pi _r^{GUWP}=\frac{n[a_1a_2(a_1+a_2)+a_1a_2rg-2(a_1+a_2)r^2g^2-8r^3g^3]}{16a_1a_2}. \end{aligned}$$

Taking the first and second derivations of \(\pi _r^{GUWP}\), we have \(\frac{\partial \pi _r^{GUWP}}{\partial g}=\frac{n[a_1a_2-4(a_1+a_2)rg-24r^2g^2]}{16a_1a_2}\) and \(\frac{\partial ^2 \pi _r^{GUWP}}{\partial g^2}=-\frac{n(a_1+a_2+12rg)}{4a_1a_2}\). Since \(\frac{\partial ^2 \pi _r^{GUWP}}{\partial g^2}<0\), then \(\pi _r^{GUWP}\) is concave in \(g\). From \(\frac{\partial \pi _r^{GUWP}}{\partial g}=0\), we get the optimal gift card value \(g^{GUWP^*}=\frac{\sqrt{a_1^2+8a_1a_2+a_2^2}-(a_1+a_2)}{12r}\). \(\square\)

Proof

Corollary 1

According to Proposition 2, we have

$$\begin{aligned} \frac{\partial G^{GUWP^*}}{\partial r}= & {} \frac{a_1+a_2-\sqrt{a_1^2+8a_1a_2+a_2^2}}{12r^2}<0,\\ \frac{\partial G^{GUWP^*}}{\partial a_1}= & {} \frac{1}{12r}(\frac{a_1+4a_2}{\sqrt{a_1^2+8a_1a_2+a_2^2}} -1)>0,\\ and \; \frac{\partial G^{GUWP^*}}{\partial a_2}= & {} \frac{1}{12r}(\frac{4a_1+a_2}{\sqrt{a_1^2+8a_1a_2+a_2^2}} -1)>0. \end{aligned}$$

\(\square\)

Proof

Proposition 3

From Tables  1 and 4, we can get the results of this Proposition. \(\square\)

Proof

Proposition 4

Substituting \(w_1=a_1/2\) and \(w_2=a_2/2\) into Eq. (10), we have

$$\begin{aligned} \pi _r^{GUW}= & {} \frac{n}{4a_1a_2}[(6a_1a_2+10a_2rg+6r^2g^2)p_1+(6a_1a_2+10a_1rg+6r^2g^2)p_2\\&-12rgp_1p_2 -4(a_2p_1^2+a_1p_2^2)-(2a_1a_2+5r^2g^2)(a_1+a_2)\\&-8a_1a_2rg-2r^3g^3]. \end{aligned}$$

Taking the first and second derivations of \(\pi _r^{GUW}\) , we have

$$\begin{aligned} \frac{\partial \pi _r^{GUW}}{\partial p_1}= & {} \frac{n(3a_1a_2+5a_2rg+3r^2g^2-4a_2p_1-6rgp_2)}{2a_1a_2},\\ \frac{\partial \pi _r^{GUW}}{\partial p_2}= & {} \frac{n(3a_1a_2+5a_1rg+3r^2g^2-4a_1p_2-6rgp_1)}{2a_1a_2},\\ \frac{\partial ^2 \pi _r^{GUW}}{\partial p_1^2}= & {} -\frac{2n}{a_1}, \, and \; \frac{\partial ^2 \pi _r^{GUW}}{\partial p_2^2}=-\frac{2n}{a_2}. \end{aligned}$$

Then the Hessian matrix is

$$\begin{aligned} H=\left[ \begin{array}{cc} \frac{\partial ^2 \pi _r^{GUW}}{\partial p_1^2} &{} \frac{\partial ^2 \pi _r^{GUW}}{\partial p_1 \partial p_2} \\ \frac{\partial ^2 \pi _r^{GUW}}{\partial p_1 \partial p_2} &{} \frac{\partial ^2 \pi _r^{GUW}}{\partial p_2^2} \\ \end{array}\right] =\left[ \begin{array}{cc} -\frac{2n}{a_1} &{} -\frac{3nrg}{a_1a_2} \\ -\frac{3nrg}{a_1a_2} &{} -\frac{2n}{a_2} \\ \end{array}\right] . \end{aligned}$$

We have \(|H_1|=-2n/a_1<0\) and \(|H_2|=\frac{n^2(4a_1a_2-9r^2g^2)}{a_1^2a_2^2}\). Since \(0<g<a_i/2(i=1,2)\), then \(|H_2|>0\). So \(\pi _r^{GUW}\) is jointly concave in \(p_1\) and \(p_2\). From the first-order-condition, we get the optimal retailer prices. \(\square\)

Proof

Corollary 2

According to Proposition 4, we have

$$\begin{aligned} \frac{\partial (p_1^{GUW^*}-a_1/2)}{\partial g}= & {} \frac{r[81r^4g^4+9a_1a_2rg(4a_1-11rg)+4 a_1^2a_2^2]}{2(4a_1a_2-9r^2g^2)^2}>0,\\ \frac{\partial (p_1^{GUW^*}-a_1/2)}{\partial r}= & {} \frac{g[81r^4g^4+9a_1a_2rg(4a_1-11rg)+4 a_1^2a_2^2]}{2(4a_1a_2-9r^2g^2)^2}>0,\\ \frac{\partial (p_2^{GUW^*}-a_2/2)}{\partial g}= & {} \frac{r[81r^4g^4+9a_1a_2rg(4a_2-11rg)+4 a_1^2a_2^2]}{2(4a_1a_2-9r^2g^2)^2}>0,\\ \frac{\partial (p_2^{GUW^*}-a_2/2)}{\partial r}= & {} \frac{g[81r^4g^4+9a_1a_2rg(4a_2-11rg)+4 a_1^2a_2^2]}{2(4a_1a_2-9r^2g^2)^2}>0,\\ \frac{\partial (p_1^{GUW^*}+p_2^{GUW^*}-rg)}{\partial g}= & {} -\frac{3a_1a_2r(2a_1-3rg)(2a_2-3rg)}{(4a_1a_2-9r^2g^2)^2}<0,\\ \frac{\partial (p_1^{GUW^*}+p_2^{GUW^*}-rg)}{\partial r}= & {} -\frac{3a_1a_2g(2a_1-3rg)(2a_2-3rg)}{(4a_1a_2-9r^2g^2)^2}<0. \end{aligned}$$

\(\square\)

Proof

Proposition 5 and Corollary 3

According to the proof of Proposition 4, we know that given a gift card value \(g\), when \(a_1=a_2=a\), the optimal solutions of \(p_1^*\) and \(p_2^*\) are determined by the two first-order conditions

$$\begin{aligned}&\frac{n}{2 a^2}[3 a^2+a (5 rg-4p_1)+3rg (rg-2 p_2)]=0, \end{aligned}$$
(17)
$$\begin{aligned}&\frac{n}{2 a^2}[3 a^2+a (5 rg-4p_2)+3 rg (rg-2 p_1)]=0. \end{aligned}$$
(18)

From Eqs. (17) and (18), we get \(p_1^*=p_2^*=\frac{3 a^2+5 a G+3 r^2g^2}{2 (2 a+3 rg)}\). Substituting them into Eq. (17), we have

$$\begin{aligned} \pi _r^{GUW}(p_1^*,p_2^*)=\frac{n(a^4+2 a^3rg-a^2r^2g^2-4 a r^3g^3+3 r^4g^4)}{4 a^2 (2 a+3 rg)}. \end{aligned}$$

Taking the first and second derivations of \(\pi _r^{GUW}(p_1^*,p_2^*)\), we have

$$\begin{aligned} \frac{\partial \pi _r^{GUW}(p_1^*,p_2^*)}{\partial g}=\frac{ n(a^4-4 a^3 rg-27 a^2 r^2g^2+27 r^4g^4)}{4 a^2 (2 a+3 rg)^2} \end{aligned}$$

and

$$\begin{aligned} \frac{\partial ^2 \pi _r^{GUW}(p_1^*,p_2^*)}{\partial g^2}=\frac{n (81 r^4g^4+108 a r^3g^3-48 a^3 rg-7 a^4) }{2 a^2 (2 a+3 rg)^3}. \end{aligned}$$

Since \(0<g\le a/2\), then \(0<rg\le a/2\). If \(a/7\le rg\le a/2\), then \(\frac{\partial \pi _r^{GUW}(p_1^*,p_2^*)}{\partial g}<0\). So, \(\pi _r^{GUW}(p_1^*,p_2^*)\) is decreasing in \(g\) and the optimal gift card value \(G^*=\frac{a}{7r}\). if \(0<rg\le a/7\), then \(\frac{\partial ^2 \pi _r^{GUW}(p_1^*,p_2^*)}{\partial g^2}<0\). So, \(\pi _r^{GUW}(p_1^*,p_2^*)\) is concave in \(g\) and the optimal gift card value \(g^*\) is determined by the first-order condition \(\frac{\partial \pi _r^{GUW}(p_1^*,p_2^*)}{\partial g}=0\). Thus, when \(0<g\le a/2\), the optimal gift card value satisfies \(g^*<\frac{a}{7r}\). \(\square\)

Proof

Proposition 6

Substituting Eqs. (7), (8) and (9) into Eq. (10), we have

$$\begin{aligned} \pi _r^{DG}= & {} \frac{n}{a_1a_2}\{[a_2(a_1-p_1)+rg (a_2-p_2)] (p_1-w_1)\\&+[rg (a_1-p_1)+a_1 (a_2-p_2)](p_2-w_2) \\&-rg[(a_1+rg-p_1) (a_2+rg-p_2)]\\&+\frac{r^2g^2}{2}(p_1-w_1+p_2-w_2+rg)\}. \end{aligned}$$

Taking the first and second derivations of \(\pi _r^{DG}\) , we have

$$\begin{aligned} \frac{\partial \pi _r^{DG}}{\partial p_1}= & {} \frac{n[2a_2(a_1+2rg-2p_1+w_1)+rg(3rg-6p_2+2w_2)]}{2a_1a_2},\\ \frac{\partial \pi _r^{DG}}{\partial p_2}= & {} \frac{n[2a_1(a_2+2rg-2p_2+w_2)+rg(3rg-6p_1+2w_1)]}{2a_1a_2},\\ \frac{\partial ^2 \pi _r^{DG}}{\partial p_1^2}= & {} -\frac{2n}{a_1},\, and\; \frac{\partial ^2 \pi _r^{DG}}{\partial p_2^2}=-\frac{2n}{a_2}. \end{aligned}$$

Then the Hessian matrix is

$$\begin{aligned} H=\left[ \begin{array}{cc} \frac{\partial ^2 \pi _r^{DG}}{\partial p_1^2} &{} \frac{\partial ^2 \pi _r^{DG}}{\partial p_1 \partial p_2} \\ \frac{\partial ^2 \pi _r^{DG}}{\partial p_1 \partial p_2} &{} \frac{\partial ^2 \pi _r^{DG}}{\partial p_2^2} \\ \end{array}\right] =\left[ \begin{array}{cc} -\frac{2n}{a_1} &{} -\frac{3nrg}{a_1a_2} \\ -\frac{3nrg}{a_1a_2} &{} -\frac{2n}{a_2} \\ \end{array}\right] . \end{aligned}$$

We have \(|H_1|=-\frac{2n}{a_1}<0\) and \(|H_2|=\frac{n^2(4a_1a_2-9r^2g^2)}{a_1^2a_2^2}\). Since \(0<g\le \frac{a_i}{2}(i=1,2)\), then \(|H_2|>0\). So \(\pi _r^{DG}\) is jointly concave in \(p_1\) and \(p_2\). From \(\frac{\partial \pi _r^{DG}}{\partial p_1}=0\) and \(\frac{\partial \pi _r^{DG}}{\partial p_2}=0\), the optimal retailer prices are given by

$$\begin{aligned} p_1^{*}(w_1,w_2)=\frac{2a_1a_2(2a_1+2w_1+rg)-rg(6a_1 rg+9 r^2g^2+2a_1w_2+6rgw_1)}{2(4a_1a_2-9r^2g^2)} \end{aligned}$$

and

$$\begin{aligned} p_2^{*}(w_1,w_2)=\frac{2a_1a_2(2a_2+2w_2+rg)-G(6a_2 rg+9 r^2g^2+2a_2w_1+6rgw_2)}{2(4a_1a_2-9r^2g^2)}. \end{aligned}$$

Substituting \(p_1^*(w_1,w_2)\) and \(p_2^*(w_1,w_2)\) into Eq. (11), we have

$$\begin{aligned} \pi _{m1}^{DG}= & {} \frac{n w_1 }{2 a_1a_2 (4 a_1 a_2-9 r^2g^2)}[4 a_1^2 a_2^2+2a_1a_2^2rg-10a_1a_2r^2g^2 \\&-3a_2r^3g^3+4a_2(2r^2g^2-a_1a_2)w_1+2rg(3r^2g^2-a_1a_2)w_2]. \end{aligned}$$

Taking the first and second derivations of \(\pi _{m1}^{DG}\) , we have

$$\begin{aligned} \frac{\partial \pi _{m1}^{DG}}{\partial w_1}= & {} \frac{n}{2 a_1a_2 (4 a_1 a_2-9 r^2g^2)}[4 a_1^2 a_2^2+2a_1a_2^2rg-10a_1a_2r^2g^2 \\&-3a_2r^3g^3+8a_2(2r^2g^2-a_1a_2)w_1+2rg(3r^2g^2-a_1a_2)w_2] \end{aligned}$$

and

$$\begin{aligned} \frac{\partial ^2 \pi _{m1}^{DG}}{\partial w_1^2}=-\frac{4n(a_1a_2-2r^2g^2)}{a_1(4 a_1 a_2 -9 r^2g^2)}. \end{aligned}$$

Since \(\frac{\partial ^2 \pi _{m1}^{DG}}{\partial w_1^2}<0\), then \(\pi _{m1}^{DG}\) is concave in \(w_1\) and the optimal wholesale price of product 1 is determined by the first-order-condition.

Substituting \(p_1^*(w_1,w_2)\) and \(p_2^*(w_1,w_2)\) into Eq. (12), we have

$$\begin{aligned} \pi _{m2}^{DG}= & {} \frac{n w_2 }{2 a_1a_2 (4 a_1 a_2-9 r^2g^2)}[4 a_1^2 a_2^2+2a_1^2a_2rg-10a_1a_2r^2g^2\\&-3a_1r^3g^3+4a_1(2r^2g^2-a_1a_2)w_2+2rg(3r^2g^2-a_1a_2)w_1]. \end{aligned}$$

Taking the first and second derivations of \(\pi _{m2}^{DG}\) , we have

$$\begin{aligned} \frac{\partial \pi _{m2}^{DG}}{\partial w_2}= & {} \frac{n}{2 a_1a_2 (4 a_1 a_2-9 r^2g^2)}[4 a_1^2a_2^2+2a_1^2a_2rg-10a_1a_2r^2g^2\\&-3a_1r^3g^3+8a_1(2r^2g^2-a_1a_2)w_2+2rg(3r^2g^2-a_1a_2)w_1] \end{aligned}$$

and

$$\begin{aligned} \frac{\partial ^2 \pi _{m2}^{DG}}{\partial w_2^2}=-\frac{4n(a_1a_2-2r^2g^2)}{a_2(4 a_1 a_2 -9 r^2g^2)}. \end{aligned}$$

Since \(\frac{\partial ^2 \pi _{m2}^{DG}}{\partial w_2^2}<0\), then \(\pi _{m2}^{DG}\) is concave in \(w_2\) and the optimal wholesale price of product 2 is determined by the first-order-condition. Solving \(\frac{\partial \pi _{m1}^{DG}}{\partial w_1}=0\) and \(\frac{\partial \pi _{m2}^{DG}}{\partial w_2}=0\), we can get the optimal wholesale prices of two products \(w_1^{DG^*}\) and \(w_2^{DG^*}\). Substituting \(w_1^{DG^*}\) and \(w_2^{DG^*}\) into\(p_1^*(w_1,w_2)\) and \(p_2^*(w_1,w_2)\), we get the optimal retail prices of two products \(p_1^{DG^*}\) and \(p_2^{DG^*}\). \(\square\)

Proof

Corollary 4

The proof of this Corollary is similar to that of Corollary 2. \(\square\)

Proof

Corollary 5

The proof of this Corollary is similar to that of Corollary 2. \(\square\)

Proof

Corollary 6

Let \(G=rg\). According to Proposition 6 and Proposition 1, we have

$$\begin{aligned} w_1^{DG^*}-w_1^{NG^*} =\frac{a_1a_2G(4 a_1^2 a_2^2-9 a_1^2 a_2 G-6a_1 a_2 G^2+19a_1 G^3-6 G^4)}{2(16 a_1^3 a_2^3-65 a_1^2 a_2^2 G^2+70 a_1a_2 G^4-9 G^6)} \end{aligned}$$

and

$$\begin{aligned} w_2^{DG^*}-w_2^{DG^*}=\frac{a_1 a_2 G (4 a_1^2 a_2^2-9 a_1a_2^2 G-6 a_1a_2 G^2+19 a_2 G^3-6 G^4)}{2(16 a_1^3 a_2^3-65 a_1^2 a_2^2 G^2+70 a_1a_2 G^4-9 G^6)}. \end{aligned}$$

When \(a_1 \le a_2\), then \(w_1^{DG^*}-w_1^{NG^*}>0\). Let \(G_1^{DG}\) be the smallest positive real root of \(6 G^4-19 a_1 G^3+6 a_1a_2 G^2+9 a_1^2 a_2 G-4 a_1^2 a_2^2=0\). When \(a_1 > a_2\) and \(0<G<G_1^{DG}\), then \(w_1^{DG^*}-w_1^{NG^*}>0\); when \(a_1 > a_2\) and \(G_1^{DG}\le G<a_2/2\), then \(w_1^{DG^*}-w_1^{NG^*}<0\).

When \(a_1\ge a_2\), then \(w_2^{DG^*}-w_2^{NG^*}>0\). Let \(G_2^{DG}\) be the smallest positive real root of \(6 G^4-19 a_2 G^3+6 a_1a_2 G^2+9 a_1 a_2^2 G-4 a_1^2 a_2^2=0\). When \(a_1< a_2\) and \(0<G<G_2^{DG}\), then \(w_2^{DG^*}-w_2^{NG^*}>0\); when \(a_1<a_2\) and \(G_2^{DG} \le G<a_1/2\), then \(w_2^{DG^*}-w_2^{NG^*}<0\). \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Pan, J. & Zhou, J. Optimal pricing with free gift cards in a two-product supply chain. Flex Serv Manuf J 34, 125–155 (2022). https://doi.org/10.1007/s10696-021-09409-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-021-09409-8

Keywords

Navigation