Skip to main content
Log in

Analysis of a two-stage, flexible production system with unreliable machines, finite buffers and non-negligible setups

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

We analyze a Markov model of a two-stage production system capable of producing two part types. Each stage consists of an unreliable machine and the different stages are decoupled by two intermediate buffers of finite capacity, one for each part type. Unlike previous work, we specifically consider non-negligible machine setup times during changeovers and also assume that machine failure probabilities are dependent on the part type being produced. We assume that machine processing times, repair/failure times and setup times are exponentially distributed and may have different mean rates for each machine and for each part-type. We describe a solution method to evaluate the system performance that reduces the total number of equations to be solved from a multiplicative function to an additive function of buffer sizes. This model may then be integrated with a new decomposition method for analyzing longer lines. The results show the relative influence of different factors on system performance and thus provide guidance to the optimal choice of system parameters such as buffer sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amin M, Altiok T (1997) Control policies for multi-product, multi-stage manufacturing systems: an experimental approach. Int J Prod Res 35(1):201–223

    Article  MATH  Google Scholar 

  • Boysen N, Fliedner M, Scholl A (2009) Sequencing mixed-model assembly lines: Survey, classification and model critique. Eur J Oper Res 192:349–373

    Article  MathSciNet  MATH  Google Scholar 

  • Buzacott JA (1967) Automatic transfer lines with buffer stocks. Int J Prod Res 5(3):183–200

    Article  Google Scholar 

  • Buzacott JA, Hanifin LE (1978) Models of automatic transfer lines with inventory banks: a review and comparison. AIIE Trans 10(2):197–207

    Article  Google Scholar 

  • Colledani M, Tolio T (2004) Performance evaluation of continuous production lines with deterministic processing times, multiple failure modes and multiple part types. In: Proceedings of the 4th CIRP international seminar on intelligent computation in manufacturing. Sorrento, Italy, pp 29–34

  • Colledani M, Matta A, Tolio T (2005) Performance evaluation of production lines with finite buffer capacity producing two different products. OR Spectr 27:243–263

    Article  MathSciNet  MATH  Google Scholar 

  • Colledani M, Gandola F, Matta A, Tolio T (2008) Performance evaluation of linear and non-linear multi-product multi-stage lines with unreliable machines and finite homogeneous buffers. IIE Trans 40(6):612–626

    Article  Google Scholar 

  • Dallery Y, Gershwin SB (1992) Manufacturing flow line systems: a review of models and analytical results. Queueing Syst Theory Appl 12:3–94

    Article  MATH  Google Scholar 

  • Dalton G (2008) Simulation study of a semi-automated flexible production line. Master’s Thesis, Dublin City University, Ireland

  • Diamantidis AC, Papadopoulos CT, Heavey C (2007) Approximate analysis of serial flow lines with multiple parallel machine stations. IIE Trans 39(4):361–375

    Article  Google Scholar 

  • Ford Motor Company (2009) New era of flexible manufacturing begins at Ford’s Kentucky truck plant in Louisville. http://media.ford.com/article_display.cfm?article_id=30246. Accessed 15 May 2009

  • Gershwin SB (1987) An efficient decomposition method for the approximate evaluation of tandem queues with finite storage space and blocking. Oper Res 35(2):291–305

    Article  MathSciNet  MATH  Google Scholar 

  • Gershwin SB (1994) Manufacturing systems engineering. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Gurgur CZ, Altiok T (2007) Analysis of decentralized multi-product pull systems with lost sales. Naval Res Logistics 54:357–370

    Article  MathSciNet  MATH  Google Scholar 

  • Jang YJ (2007) Mathematical modeling and analysis of flexible production lines. PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts

  • Kletter DB (1996) Planning and control of an unreliable machine in a multi-item production inventory system. PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA

  • Krieg GN, Kuhn H (2008) Performance evaluation of two-stage multi-product kanban kystems. IIE Trans 40(3):265–283

    Article  Google Scholar 

  • Li J, Huang N (2005) Modeling and analysis of a multiple product manufacturing system with split and merge. Int J Prod Res 43(19):4049–4066

    Article  MATH  Google Scholar 

  • Li J, Blumenfeld DE, Huang N, Alden JM (2009) Throughput analysis of production systems: recent advances and future topics. Int J Prod Res 47(14):3823–3851

    Article  Google Scholar 

  • Matta A, Semeraro Q (2005) Design of advanced manufacturing systems- models for capacity planning in advanced manufacturing systems. Springer, Dordrecht

    Book  Google Scholar 

  • Monden Y (1998) Toyota production system, vol 2. Engineering & Management Press, Norcross, Georgia

    Google Scholar 

  • Nemec JE (1999) Diffusion and decomposition approximations of stochastic models of multiclass processing networks. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA

  • Syrowicz DA (1999) Decomposition analysis of a deterministic, multiple-part-type, multiple-failure-mode production line. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA

  • Tolio T, Matta A (1998) A method for performance evaluation of automated flow lines. CIRP Ann Manuf Technol 47(1):373–376

    Article  Google Scholar 

  • Winands EMM, de Kok AG, Timpe C (2009) Case study of a batch-production and inventory system. Interfaces 39(6):552–554

    Article  Google Scholar 

  • Zhou X (2009) Design of a demand driven multi-item-multi-stage manufacturing system: production scheduling, WIP control and Kanban implementation. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA

Download references

Acknowledgments

The authors would like to thank the three anonymous reviewers for their valuable suggestions which have considerably enhanced the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velusamy Subramaniam.

Appendices

Appendix 1: Balance equations

The balance equations (BEs) for the 2M2B model are provided below. These BEs are listed according to the nine BE groups defined in Table 1 of Sect. 3.4.

BE Group I. n a  = 0 and n b  = 0

$$ p(0,0,W_{A} ,W_{A} )(\mu_{1A} + p_{1A} ) = p(1,0,W_{A} ,W_{A} )\mu_{2A} + p(0,0,\Updelta_{A} ,W_{A} )r_{1A} $$
(5)
$$ p(0,0,W_{A} ,W_{B} )(\mu_{1A} + p_{1A} ) = p(0,1,W_{A} ,W_{B} )\mu_{2B} + p(0,0,S_{A} ,W_{B} )s_{1A} + p(0,0,\Updelta_{A} ,W_{B} )r_{1A} $$
(6)
$$ p(0,0,S_{A} ,W_{B} )s_{1A} = p(0,1,S_{A} ,W_{B} )\mu_{2B} $$
(7)
$$ p(0,0,\Updelta_{A} ,W_{A} )r_{1A} = p(0,0,W_{A} ,W_{A} )p_{1A} + p(1,0,\Updelta_{A} ,W_{A} )\mu_{2A} $$
(8)
$$ p(0,0,\Updelta_{A} ,W_{B} )r_{1A} = p(0,0,W_{A} ,W_{B} )p_{1A} + p(0,1,\Updelta_{A} ,W_{B} )\mu_{2B} $$
(9)
$$ p(0,0,W_{B} ,W_{A} )(\mu_{1B} + p_{1B} ) = p(1,0,W_{B} ,W_{A} )\mu_{2A} + p(0,0,S_{B} ,W_{A} )s_{1B} + p(0,0,\Updelta_{B} ,W_{A} )r_{1B} $$
(10)
$$ p(0,0,W_{B} ,W_{B} )(\mu_{1B} + p_{1B} ) = p(0,1,W_{B} ,W_{B} )\mu_{2B} + p(0,0,\Updelta_{B} ,W_{B} )r_{1B} $$
(11)
$$ p(0,0,S_{B} ,W_{A} )s_{1B} = p(1,0,S_{B} ,W_{A} )\mu_{2A} $$
(12)
$$ p(0,0,\Updelta_{B} ,W_{A} )r_{1B} = p(0,0,W_{B} ,W_{A} )p_{1B} + p(1,0,\Updelta_{B} ,W_{A} )\mu_{2A} $$
(13)
$$ p(0,0,\Updelta_{B} ,W_{B} )r_{1B} = p(0,0,W_{B} ,W_{B} )p_{1B} + p(0,1,\Updelta_{B} ,W_{B} )\mu_{2B} $$
(14)

BE Group II. \( 1 \le n_{A} \le N_{A} - 1{\text{ and }}n_{B} = 0 \)

$$ \begin{gathered} p(n_{A} ,0,W_{A} ,W_{A} )(\mu_{1A} + \mu_{2A} + p_{1A} + p_{2A} ) = p(n_{A} - 1,0,W_{A} ,W_{A} )\mu_{1A} + p(n_{A} + 1,0,W_{A} ,W_{A} )\mu_{2A} + p(n_{A} ,0,W_{A} ,S_{A} )s_{2A} + p(n_{A} ,0,W_{A} ,\Updelta_{A} )r_{2A} + p(n_{A} ,0,\Updelta_{A} ,W_{A} )r_{1A} \\ \end{gathered} $$
(15)
$$ \begin{gathered} p(n_{A} ,0,W_{A} ,S_{A} )(\mu_{1A} + s_{2A} + p_{1A} ) = p(n_{A} ,1,W_{A} ,W_{B} )\mu_{2B} + p(n_{A} - 1,0,W_{A} ,S_{A} )\mu_{1A} + p(n_{A} ,0,\Updelta_{A} ,S_{A} )r_{1A} \\ \end{gathered} $$
(16)
$$ \begin{gathered} p(n_{A} ,0,W_{A} ,\Updelta_{A} )(\mu_{1A} + p_{1A} + r_{2A} ) = p(n_{A} - 1,0,W_{A} ,\Updelta_{A} )\mu_{1A} + p(n_{A} ,0,W_{A} ,W_{A} )p_{2A} + p(n_{A} ,0,\Updelta_{A} ,\Updelta_{A} )r_{1A} \\ \end{gathered} $$
(17)
$$ \begin{gathered} p(n_{A} ,0,\Updelta_{A} ,W_{A} )(\mu_{2A} + p_{2A} + r_{1A} ) = p(n_{A} + 1,0,\Updelta_{A} ,W_{A} )\mu_{2A} + p(n_{A} ,0,\Updelta_{A} ,S_{A} )s_{2A} + p(n_{A} ,0,W_{A} ,W_{A} )p_{1A} + p(n_{A} ,0,\Updelta_{A} ,\Updelta_{A} )r_{2A} \\ \end{gathered} $$
(18)
$$ p(n_{A} ,0,\Updelta_{A} ,\Updelta_{A} )(r_{1A} + r_{2A} ) = p(n_{A} ,0,\Updelta_{A} ,W_{A} )p_{2A} + p(n_{A} ,0,W_{A} ,\Updelta_{A} )p_{1A} $$
(19)
$$ p(n_{A} ,0,\Updelta_{A} ,S_{A} )(s_{2A} + r_{1A} ) = p(n_{A} ,1,\Updelta_{A} ,W_{B} )\mu_{2B} + p(n_{A} ,0,W_{A} ,S_{A} )p_{1A} $$
(20)
$$ p(n_{A} ,0,S_{B} ,W_{A} )(s_{1B} + \mu_{2A} + p_{2A} ) = p(n_{A} + 1,0,S_{B} ,W_{A} )\mu_{2A} + p(n_{A} ,0,S_{B} ,\Updelta_{A} )r_{2A} $$
(21)
$$ p(n_{A} ,0,S_{B} ,\Updelta_{A} )(s_{1B} + r_{2A} ) = p(n_{A} ,0,S_{B} ,W_{A} )p_{2A} $$
(22)
$$ \begin{gathered} p(n_{A} ,0,W_{B} ,W_{A} )(\mu_{1B} + \mu_{2A} + p_{1B} + p_{2A} ) = p(n_{A} + 1,0,W_{B} ,W_{A} )\mu_{2A} + p(n_{A} ,0,S_{B} ,W_{A} )s_{1B} \hfill \\ { + }p(n_{A} ,0,W_{B} ,\Updelta_{A} )r_{2A} + p(n_{A} ,0,\Updelta_{B} ,W_{A} )r_{1B} \hfill \\ \end{gathered} $$
(23)
$$ \begin{gathered} p(n_{A} ,0,W_{B} ,\Updelta_{A} )(\mu_{1B} + p_{1B} + r_{2A} ) = p(n_{A} ,0,S_{B} ,\Updelta_{A} )s_{1B} + p(n_{A} ,0,W_{B} ,W_{A} )p_{2A} \hfill { + }p(n_{A} ,0,\Updelta_{B} ,\Updelta_{A} )r_{1B} \hfill \\ \end{gathered} $$
(24)
$$ \begin{gathered} p(n_{A} ,0,\Updelta_{B} ,W_{A} )(r_{1B} + \mu_{2A} + p_{2A} ) = p(n_{A} + 1,0,\Updelta_{B} ,W_{A} )\mu_{2A} + p(n_{A} ,0,\Updelta_{B} ,\Updelta_{A} )r_{2A} + p(n_{A} ,0,W_{B} ,W_{A} )p_{1B} \\ \end{gathered} $$
(25)
$$ p(n_{A} ,0,\Updelta_{B} ,\Updelta_{A} )(r_{1B} + r_{2A} ) = p(n_{A} ,0,W_{B} ,\Updelta_{A} )p_{1B} + p(n_{A} ,0,\Updelta_{B} ,W_{A} )p_{2A} $$
(26)

For \( n_{A} = 1{\text{ and }}n_{B} = 0 \) only Eq. 16 is as follows:

$$ \begin{gathered} p(1,0,W_{A} ,S_{A} )(\mu_{1A} + s_{2A} + p_{1A} ) = p(1,1,W_{A} ,W_{B} )\mu_{2B} + p(0,0,W_{A} ,W_{B} )\mu_{1A} + p(1,0,\Updelta_{A} ,S_{A} )r_{1A} \end{gathered} $$
(27)

BE Group III. \( n_{A} = N_{A} {\text{ and }}n_{B} = 0 \)

$$ \begin{gathered} p(N_{A} ,0,S_{B} ,W_{A} )(\mu_{2A} + s_{1B} + p_{2A} ) = p(N_{A} - 1,0,W_{A} ,W_{A} )\mu_{1A} + p(N_{A} ,0,S_{B} ,S_{A} )s_{2A} + p(N_{A} ,0,S_{B} ,\Updelta_{A} )r_{2A} \\ \end{gathered} $$
(28)
$$ p(N_{A} ,0,S_{B} ,\Updelta_{A} )(s_{1B} + r_{2A} ) = p(N_{A} - 1,0,W_{A} ,\Updelta_{A} )\mu_{1A} + p(N_{A} ,0,S_{B} ,W_{A} )p_{2A} $$
(29)
$$ \begin{gathered} p(N_{A} ,0,W_{B} ,\Updelta_{A} )(\mu_{1B} + p_{1B} + r_{2A} ) = p(N_{A} ,0,S_{B} ,\Updelta_{A} )s_{1B} + p(N_{A} ,0,\Updelta_{B} ,\Updelta_{A} )r_{1B} + p(N_{A} ,0,W_{B} ,W_{A} )p_{2A} \\ \end{gathered} $$
(30)
$$ p(N_{A} ,0,\Updelta_{B} ,\Updelta_{A} )(r_{1B} + r_{2A} ) = p(N_{A} ,0,\Updelta_{B} ,W_{A} )p_{2A} + p(N_{A} ,0,W_{B} ,\Updelta_{A} )p_{1B} $$
(31)
$$ \begin{gathered} p(N_{A} ,0,W_{B} ,W_{A} )(\mu_{1B} + \mu_{2A} + p_{1B} + p_{2A} ) = p(N_{A} ,0,S_{B} ,W_{A} )s_{1B} + p(N_{A} ,0,W_{B} ,S_{A} )s_{2A} + p(N_{A} ,0,\Updelta_{B} ,W_{A} )r_{1B} + p(N_{A} ,0,B,\Updelta_{A} )r_{2A} \\ \end{gathered} $$
(32)
$$ \begin{gathered} p(N_{A} ,0,W_{B} ,S_{A} )(\mu_{1B} + s_{2A} + p_{1B} ) = p(N_{A} ,1,W_{B} ,W_{B} )\mu_{2B} + p(N_{A} ,0,S_{B} ,S_{A} )s_{1B} \\ + p(N_{A} ,0,\Updelta_{B} ,S_{A} )r_{1B} \\ \end{gathered} $$
(33)
$$ p(N_{A} ,0,S_{B} ,S_{A} )(s_{1B} + s_{2A} ) = p(N_{A} - 1,0,W_{A} ,S_{A} )\mu_{1A} + p(N_{A} ,1,S_{B} ,W_{B} )\mu_{2B} $$
(34)
$$ \begin{gathered} p(N_{A} ,0,\Updelta_{B} ,W_{A} )(\mu_{2A} + r_{1B} + p_{2A} ) = p(N_{A} ,0,\Updelta_{B} ,S_{A} )s_{2A} + p(N_{A} ,0,\Updelta_{B} ,\Updelta_{A} )r_{2A} + p(N_{A} ,0,W_{B} ,W_{A} )p_{1B} \\ \end{gathered} $$
(35)
$$ p(N_{A} ,0,\Updelta_{B} ,S_{A} )(s_{2A} + r_{1B} ) = p(N_{A} ,1,\Updelta_{B} ,W_{B} )\mu_{2B} + p(N_{A} ,0,W_{B} ,S_{A} )p_{1B} $$
(36)

BE Group IV. \( n_{A} = 0{\text{ and }}1 \le n_{B} \le N_{B} - 1 \)

$$ \begin{gathered} p(0,n_{B} ,W_{B} ,W_{B} )(\mu_{1B} + \mu_{2B} + p_{1B} + p_{2B} ) = p(0,n_{B} - 1,W_{B} ,W_{B} )\mu_{1B} + p(0,n_{B} + 1,W_{B} ,W_{B} )\mu_{2B} + p(0,n_{B} ,W_{B} ,S_{B} )s_{2B} + p(0,n_{B} ,W_{B} ,\Updelta_{B} )r_{2B} \\ + p(0,n_{B} ,\Updelta_{B} ,W_{B} )r_{1B} \\ \end{gathered} $$
(37)
$$ \begin{gathered} p(0,n_{B} ,W_{B} ,S_{B} )(\mu_{1B} + s_{2B} + p_{1B} ) = p(1,n_{B} ,W_{B} ,W_{A} )\mu_{2A} + p(0,n_{B} - 1,W_{B} ,S_{B} )\mu_{1B} + p(0,n_{B} ,\Updelta_{B} ,S_{B} )r_{1B} \\ \end{gathered} $$
(38)
$$ \begin{gathered} p(0,n_{B} ,W_{B} ,\Updelta_{B} )(\mu_{1B} + p_{1B} + r_{2B} ) = p(0,n_{B} - 1,W_{B} ,\Updelta_{B} )\mu_{1B} + p(0,n_{B} ,W_{B} ,W_{B} )p_{2B} + p(0,n_{B} ,\Updelta_{B} ,\Updelta_{B} )r_{1B} \\ \end{gathered} $$
(39)
$$ \begin{gathered} p(0,n_{B} ,\Updelta_{B} ,W_{B} )(\mu_{2A} + p_{2A} + r_{1A} ) = p(0,n_{B} + 1,\Updelta_{B} ,W_{B} )\mu_{2B} + p(0,n_{B} ,\Updelta_{B} ,S_{B} )s_{2B} + p(0,n_{B} ,W_{B} ,W_{B} )p_{1B} + p(0,n_{B} ,\Updelta_{B} ,\Updelta_{B} )r_{2B} \\ \end{gathered} $$
(40)
$$ p(0,n_{B} ,\Updelta_{B} ,\Updelta_{B} )(r_{1B} + r_{2B} ) = p(0,n_{B} ,\Updelta_{B} ,W_{B} )p_{2B} + p(0,n_{B} ,W_{B} ,\Updelta_{B} )p_{1B} $$
(41)
$$ p(0,n_{B} ,\Updelta_{B} ,S_{B} )(s_{2B} + r_{1B} ) = p(1,n_{B} ,\Updelta_{B} ,W_{A} )\mu_{2A} + p(0,n_{B} ,W_{B} ,S_{B} )p_{1B} $$
(42)
$$ p(0,n_{B} ,S_{A} ,W_{B} )(s_{1A} + \mu_{2B} + p_{2B} ) = p(0,n_{B} + 1,S_{A} ,W_{B} )\mu_{2B} + p(0,n_{B} ,S_{A} ,\Updelta_{B} )r_{2B} $$
(43)
$$ p(0,n_{B} ,S_{A} ,\Updelta_{B} )(s_{1A} + r_{2B} ) = p(0,n_{B} ,S_{A} ,W_{B} )p_{2B} $$
(44)
$$ \begin{gathered} p(0,n_{A} ,W_{A} ,W_{B} )(\mu_{1A} + \mu_{2B} + p_{1A} + p_{2B} ) = p(0,n_{B} + 1,W_{A} ,W_{B} )\mu_{2B} + p(0,n_{B} ,S_{A} ,W_{B} )s_{1A} \hfill { + }p(0,n_{B} ,W_{A} ,\Updelta_{B} )r_{2B} + p(0,n_{B} ,\Updelta_{A} ,W_{B} )r_{1A} \hfill \\ \end{gathered} $$
(45)
$$ \begin{gathered} p(0,n_{B} ,W_{A} ,\Updelta_{B} )(\mu_{1A} + p_{1A} + r_{2B} ) = p(0,n_{B} ,S_{A} ,\Updelta_{B} )s_{1A} + p(0,n_{B} ,W_{A} ,W_{B} )p_{2B} \hfill { + }p(0,n_{B} ,\Updelta_{A} ,\Updelta_{B} )r_{1A} \hfill \\ \end{gathered} $$
(46)
$$ \begin{gathered} p(0,n_{B} ,\Updelta_{A} ,W_{B} )(r_{1A} + \mu_{2B} + p_{2B} ) = p(0,n_{B} + 1,\Updelta_{A} ,W_{B} )\mu_{2B} + p(0,n_{B} ,\Updelta_{A} ,\Updelta_{B} )r_{2B} + p(0,n_{B} ,W_{A} ,W_{B} )p_{1A} \\ \end{gathered} $$
(47)
$$ p(0,n_{B} ,\Updelta_{A} ,\Updelta_{B} )(r_{1A} + r_{2B} ) = p(0,n_{B} ,W_{A} ,\Updelta_{B} )p_{1A} + p(0,n_{B} ,\Updelta_{A} ,W_{B} )p_{2B} $$
(48)

For \( n_{A} = 0 \,{\text{and}}\, n_{B} = 1\) only Eq. 38 is as follows:

$$ \begin{gathered} p(0,1,W_{B} ,S_{B} )(\mu_{1B} + s_{2B} + p_{1B} ) = p(1,1,W_{B} ,W_{A} )\mu_{2A} + p(0,0,W_{B} ,W_{A} )\mu_{1B} + p(0,1,\Updelta_{B} ,S_{B} )r_{1B} \\ \end{gathered} $$
(49)

BE Group V. \(n_{A} = 0 \,{\text{and}}\, n_{B} = N_{B} \)

$$ \begin{gathered} p(0,N_{B} ,S_{A} ,W_{B} )(\mu_{2B} + s_{1A} + p_{2B} ) = p(0,N_{B} - 1,W_{B} ,W_{B} )\mu_{1B} + p(0,N_{B} ,S_{A} ,S_{B} )s_{2B} + p(0,N_{B} ,S_{A} ,\Updelta_{B} )r_{2B} \\ \end{gathered} $$
(50)
$$ p(0,N_{B} ,S_{A} ,\Updelta_{B} )(s_{1A} + r_{2B} ) = p(0,N_{B} - 1,W_{B} ,\Updelta_{B} )\mu_{1B} + p(0,N_{B} ,S_{A} ,W_{B} )p_{2B} $$
(51)
$$ \begin{gathered} p(0,N_{B} ,W_{A} ,\Updelta_{B} )(\mu_{1A} + p_{1A} + r_{2B} ) = p(0,N_{B} ,S_{A} ,\Updelta_{B} )s_{1A} + p(0,N_{B} ,\Updelta_{A} ,\Updelta_{B} )r_{1A} + p(0,N_{B} ,W_{A} ,W_{B} )p_{2B} \\ \end{gathered} $$
(52)
$$ p(N_{B} ,0,\Updelta_{A} ,\Updelta_{B} )(r_{1A} + r_{2B} ) = p(N_{B} ,0,\Updelta_{A} ,W_{B} )p_{2B} + p(N_{B} ,0,W_{A} ,\Updelta_{B} )p_{1A} $$
(53)
$$ \begin{gathered} p(0,N_{B} ,W_{A} ,W_{B} )(\mu_{1A} + \mu_{2B} + p_{1A} + p_{2B} ) = p(0,N_{B} ,S_{A} ,W_{B} )s_{1B} + p(0,N_{B} ,W_{A} ,S_{B} )s_{2B} \\ + p(0,N_{B} ,\Updelta_{A} ,W_{B} )r_{1A} + p(0,N_{B} ,W_{A} ,\Updelta_{B} )r_{2B} \\ \end{gathered} $$
(54)
$$ \begin{gathered} p(0,N_{B} ,W_{A} ,S_{B} )(\mu_{1A} + s_{2B} + p_{1A} ) = p(1,N_{B} ,W_{A} ,W_{A} )\mu_{2A} + p(0,N_{B} ,S_{A} ,S_{B} )s_{1A} + p(0,N_{B} ,\Updelta_{A} ,S_{B} )r_{1A} \\ \end{gathered} $$
(55)
$$ p(0,N_{B} ,S_{A} ,S_{B} )(s_{1A} + s_{2B} ) = p(0,N_{B} - 1,W_{B} ,S_{B} )\mu_{1B} + p(1,N_{B} ,S_{A} ,W_{A} )\mu_{2A} $$
(56)
$$ \begin{gathered} p(0,N_{B} ,\Updelta_{A} ,W_{B} )(\mu_{2B} + r_{1A} + p_{2B} ) = p(0,N_{B} ,\Updelta_{A} ,S_{B} )s_{2B} + p(0,N_{B} ,\Updelta_{A} ,\Updelta_{B} )r_{2B} + p(0,N_{B} ,W_{A} ,W_{B} )p_{1A} \\ \end{gathered} $$
(57)
$$ p(N_{B} ,0,\Updelta_{A} ,S_{B} )(s_{2B} + r_{1A} ) = p(N_{B} ,1,\Updelta_{A} ,W_{A} )\mu_{2A} + p(N_{B} ,0,W_{A} ,S_{B} )p_{1A} $$
(58)

BE Group VI. \( 1 \le n_{A} \le N_{A} - 1{\text{ and }}1 \le n_{B} \le N_{B} - 1 \)

$$ \begin{gathered} p(n_{A} ,n_{B} ,W_{A} ,\Updelta_{B} )(\mu_{1A} + p_{1A} + r_{2B} ) = p(n_{A} - 1,n_{B} ,W_{A} ,\Updelta_{B} )\mu_{1A} + p(n_{A} ,n_{B} ,W_{A} ,W_{B} )p_{2B} + p(n_{A} ,n_{B} ,\Updelta_{A} ,\Updelta_{B} )r_{1A} \\ \end{gathered} $$
(59)
$$ p(n_{A} ,n_{B} ,\Updelta_{A} ,\Updelta_{B} )(r_{1A} + r_{2B} ) = p(n_{A} ,n_{B} ,W_{A} ,\Updelta_{B} )p_{1A} + p(n_{A} ,n_{B} ,\Updelta_{A} ,W_{B} )p_{2B} $$
(60)
$$ \begin{gathered} p(n_{A} ,n_{B} ,W_{A} ,W_{B} )(\mu_{1A} + \mu_{2B} + p_{1A} + p_{2B} ) = p(n_{A} - 1,n_{B} ,W_{A} ,W_{B} )\mu_{1A} + p(n_{A} ,n_{B} ,W_{A} ,\Updelta_{B} )r_{2B} + p(n_{A} ,n_{B} + 1,W_{A} ,W_{B} )\mu_{2B} + p(n_{A} ,n_{B} ,\Updelta_{A} ,W_{B} )r_{1A} \\ \end{gathered} $$
(61)
$$ \begin{gathered} p(n_{A} ,n_{B} ,\Updelta_{A} ,W_{B} )(\mu_{2B} + r_{1A} + p_{2B} ) = p(n_{A} ,n_{B} + 1,\Updelta_{A} ,W_{B} )\mu_{2B} + p(n_{A} ,n_{B} ,W_{A} ,W_{B} )p_{1A} + p(n_{A} ,n_{B} ,\Updelta_{A} ,\Updelta_{B} )r_{2B} \\ \end{gathered} $$
(62)
$$ \begin{gathered} p(n_{A} ,n_{B} ,W_{B} ,\Updelta_{A} )(\mu_{1B} + p_{1B} + r_{2A} ) = p(n_{A} ,n_{B} - 1,W_{B} ,\Updelta_{A} )\mu_{1B} + p(n_{A} ,n_{B} ,\Updelta_{B} ,\Updelta_{A} )r_{1B} + p(n_{A} ,n_{B} ,W_{B} ,W_{A} )p_{2A} \\ \end{gathered} $$
(63)
$$ p(n_{A} ,n_{B} ,\Updelta_{B} ,\Updelta_{A} )(r_{1B} + r_{2A} ) = p(n_{A} ,n_{B} ,W_{B} ,\Updelta_{A} )p_{1B} + p(n_{A} ,n_{B} ,\Updelta_{B} ,W_{A} )p_{2A} $$
(64)
$$ \begin{gathered} p(n_{A} ,n_{B} ,W_{B} ,W_{A} )(\mu_{1B} + \mu_{2A} + p_{1B} + p_{2A} ) = p(n_{A} + 1,n_{B} ,W_{B} ,W_{A} )\mu_{2A} + p(n_{A} ,n_{B} ,\Updelta_{B} ,W_{A} )r_{1B} + p(n_{A} ,n_{B} - 1,W_{B} ,W_{A} )\mu_{1B} + p(n_{A} ,n_{B} ,W_{B} ,\Updelta_{A} )r_{2A} \\ \end{gathered} $$
(65)
$$ \begin{gathered} p(n_{A} ,n_{B} ,\Updelta_{B} ,W_{A} )(\mu_{2A} + r_{1B} + p_{2A} ) = p(n_{A} + 1,n_{B} ,\Updelta_{B} ,W_{A} )\mu_{2A} + p(n_{A} ,n_{B} ,\Updelta_{B} ,\Updelta_{A} )r_{2A} + p(n_{A} ,n_{B} ,W_{B} ,W_{A} )p_{1B} \\ \end{gathered} $$
(66)

BE Group VII. \( n_{A} = N_{A} {\text{ and }}1 \le n_{B} \le N_{B} - 1 \)

$$ p(N_{A} ,n_{B} ,W_{B} ,S_{A} )(\mu_{1B} + s_{2A} + p_{1B} ) = p(N_{A} ,n_{B} - 1,W_{B} ,S_{A} )\mu_{1B} + p(N_{A} ,n_{B} ,\Updelta_{B} ,S_{A} )r_{1B} $$
(67)
$$ p(N_{A} ,n_{B} ,\Updelta_{B} ,S_{A} )(r_{1B} + s_{2A} ) = p(N_{A} ,n_{B} ,W_{B} ,S_{A} )p_{1B} $$
(68)
$$ \begin{gathered} p(N_{A} ,n_{B} ,W_{B} ,\Updelta_{A} )(\mu_{1B} + p_{1B} + r_{2A} ) = p(N_{A} ,n_{B} ,W_{B} ,W_{A} )p_{2A} + p(N_{A} ,n_{B} ,\Updelta_{B} ,\Updelta_{A} )r_{1B} \hfill \, + p(N_{A} ,n_{B} - 1,W_{B} ,\Updelta_{A} )\mu_{1B} \hfill \\ \end{gathered} $$
(69)
$$ p(N_{A} ,n_{B} ,\Updelta_{B} ,\Updelta_{A} )(r_{1B} + r_{2A} ) = p(N_{A} ,n_{B} ,\Updelta_{B} ,W_{A} )p_{2A} + p(N_{A} ,n_{B} ,W_{B} ,\Updelta_{A} )p_{1B} $$
(70)
$$ p(N_{A} ,n_{B} ,S_{B} ,\Updelta_{B} )(s_{1B} + r_{2B} ) = p(N_{A} ,n_{B} ,S_{B} ,W_{B} )p_{2B} + p(N_{A} - 1,n_{B} ,W_{A} ,\Updelta_{B} )\mu_{1A} $$
(71)
$$ \begin{gathered} p(N_{A} ,n_{B} ,S_{B} ,W_{B} )(s_{1B} + \mu_{2B} + p_{2B} ) = pN_{A} ,n_{B} + 1,S_{B} ,W_{B} )\mu_{2B} + p(N_{A} ,n_{B} ,S_{B} ,\Updelta_{B} )r_{2B} \hfill \, + p(N_{A} - 1,n_{B} ,W_{A} ,W_{B} )\mu_{1A} \hfill \\ \end{gathered} $$
(72)
$$ \begin{gathered} p(N_{A} ,n_{B} ,W_{B} ,W_{B} )(\mu_{1B} + \mu_{2B} + p_{1B} + p_{2B} ) = p(N_{A} ,n_{B} - 1,W_{B} ,W_{B} )\mu_{1B} + p(N_{A} ,n_{B} ,S_{B} ,W_{B} )s_{1B} \hfill \, + p(N_{A} ,n_{B} ,W_{B} ,\Updelta_{B} )r_{2B} + p(N_{A} ,n_{B} ,\Updelta_{B} ,W_{B} )r_{1B} \hfill \, + p(N_{A} ,n_{B} + 1,W_{B} ,W_{B} )\mu_{2B} \hfill \\ \end{gathered} $$
(73)
$$ \begin{gathered} p(N_{A} ,n_{B} ,W_{B} ,\Updelta_{B} )(\mu_{1B} + p_{1B} + r_{2B} ) = p(N_{A} ,n_{B} - 1,W_{B} ,\Updelta_{B} )\mu_{1B} + p(N_{A} ,n_{B} ,S_{B} ,\Updelta_{B} )s_{1B} \hfill \, + p(N_{A} ,n_{B} ,\Updelta_{B} ,\Updelta_{B} )r_{1B} + p(N_{A} ,n_{B} ,W_{B} ,W_{B} )p_{2B} \hfill \\ \end{gathered} $$
(74)
$$ p(N_{A} ,n_{B} ,\Updelta_{B} ,\Updelta_{B} )(r_{1B} + r_{2B} ) = p(N_{A} ,n_{B} ,W_{B} ,\Updelta_{B} )p_{1B} + p(N_{A} ,n_{B} ,\Updelta_{B} ,W_{B} )p_{2B} $$
(75)
$$ \begin{gathered} p(N_{A} ,n_{B} ,\Updelta_{B} ,W_{B} )(\mu_{2B} + r_{1B} + p_{2B} ) = p(N_{A} ,n_{B} ,\Updelta_{B} ,\Updelta_{B} )r_{2B} + p(N_{A} ,n_{B} ,W_{B} ,W_{B} )p_{1B} \hfill \, + p(N_{A} ,n_{B} + 1,\Updelta_{B} ,W_{B} )\mu_{2B} \hfill \\ \end{gathered} $$
(76)
$$ \begin{gathered} p(N_{A} ,n_{B} ,W_{B} ,W_{A} )(\mu_{1B} + \mu_{2A} + p_{1B} + p_{2A} ) = p(N_{A} ,n_{B} ,\Updelta_{B} ,W_{A} )r_{1B} + p(N_{A} ,n_{B} ,W_{B} ,S_{A} )s_{2A} + p(N_{A} ,n_{B} - 1,W_{B} ,W_{A} )\mu_{1B} + p(N_{A} ,n_{B} ,W_{B} ,\Updelta_{A} )r_{2A} \\ \end{gathered} $$
(77)
$$ \begin{gathered} p(N_{A} ,n_{B} ,\Updelta_{B} ,W_{A} )(\mu_{2A} + r_{1B} + p_{2A} ) = p(N_{A} ,n_{B} ,\Updelta_{B} ,S_{A} )s_{2A} + p(N_{A} ,n_{B} ,\Updelta_{B} ,\Updelta_{S} )r_{2B} \hfill \, + p(N_{A} ,n_{B} ,W_{B} ,W_{A} )p_{1B} \hfill \\ \end{gathered} $$
(78)

For \( n_{A} = N_{A} {\text{ and }}n_{B} = N_{B} - 1 \) only Eq. 72 is as follows:

$$ \begin{gathered} p(N_{A} ,N_{B} - 1,S_{B} ,W_{B} )(s_{1B} + \mu_{2B} + p_{2B} ) = p(N_{A} ,N_{B} - 1,S_{B} ,\Updelta_{B} )r_{2B} + p(N_{A} ,N_{B} ,W_{A} ,W_{B} )\mu_{2B} \hfill \, + p(N_{A} - 1,N_{B} - 1,W_{A} ,W_{B} )\mu_{1A} \hfill \\ \end{gathered} $$
(79)

BE Group VIII. \( 1 \le n_{A} \le N_{A} {\text{ - 1 and }}n_{B} = N_{B} \)

$$ p(n_{A} ,N_{B} ,W_{A} ,S_{B} )(\mu_{1A} + s_{2B} + p_{1A} ) = p(n_{A} - 1,N_{B} ,W_{A} ,S_{B} )\mu_{1A} + p(n_{A} ,N_{B} ,\Updelta_{A} ,S_{B} )r_{1A} $$
(80)
$$ p(n_{A} ,N_{B} ,\Updelta_{A} ,S_{B} )(r_{1A} + s_{2B} ) = p(n_{A} ,N_{B} ,W_{A} ,S_{B} )p_{1A} $$
(81)
$$ \begin{gathered} p(n_{A} ,N_{B} ,W_{A} ,\Updelta_{B} )(\mu_{1A} + p_{1A} + r_{2B} ) = p(n_{A} ,N_{B} ,W_{A} ,W_{B} )p_{2B} + p(n_{A} ,N_{B} ,\Updelta_{A} ,\Updelta_{B} )r_{1A} \hfill \, + p(n_{A} - 1,N_{B} ,W_{A} ,\Updelta_{B} )\mu_{1A} \hfill \end{gathered} $$
(82)
$$ p(n_{A} ,N_{B} ,\Updelta_{A} ,\Updelta_{B} )(r_{1A} + r_{2B} ) = p(n_{A} ,N_{B} ,\Updelta_{A} ,W_{B} )p_{2B} + p(n_{A} ,N_{B} ,W_{A} ,\Updelta_{B} )p_{1A} $$
(83)
$$ p(n_{A} ,N_{B} ,S_{A} ,\Updelta_{A} )(s_{1A} + r_{2A} ) = p(n_{A} ,N_{B} ,S_{A} ,W_{A} )p_{2A} + p(n_{A} ,N_{B} - 1,W_{B} ,\Updelta_{A} )\mu_{1B} $$
(84)
$$ \begin{gathered} p(n_{A} ,N_{B} ,S_{A} ,W_{A} )(s_{1A} + \mu_{2A} + p_{2A} ) = p(n_{A} + 1,N_{B} ,S_{A} ,W_{A} )\mu_{2A} + p(n_{A} ,N_{B} ,S_{A} ,\Updelta_{A} )r_{2A} \hfill \, + p(n_{A} ,N_{B} - 1,W_{B} ,W_{A} )\mu_{1B} \hfill \\ \end{gathered} $$
(85)
$$ \begin{gathered} p(n_{A} ,N_{B} ,W_{A} ,W_{A} )(\mu_{1A} + \mu_{2A} + p_{1A} + p_{2A} ) = p(n_{A} - 1,N_{B} ,W_{A} ,W_{A} )\mu_{1A} + p(n_{A} ,N_{B} ,S_{A} ,W_{A} )s_{1A} + p(n_{A} ,N_{B} ,W_{A} ,\Updelta_{A} )r_{2A} + p(n_{A} ,N_{B} ,\Updelta_{A} ,W_{A} )r_{1A} + p(n_{A} + 1,N_{B} ,W_{A} ,W_{A} )\mu_{2A} \hfill \\ \end{gathered} $$
(86)
$$ \begin{gathered} p(n_{A} ,N_{B} ,W_{A} ,\Updelta_{A} )(\mu_{1A} + p_{1A} + r_{2A} ) = p(n_{A} - 1,N_{B} ,W_{A} ,\Updelta_{A} )\mu_{1A} + p(n_{A} ,N_{B} ,S_{A} ,\Updelta_{A} )s_{1A} \hfill \, + p(n_{A} ,N_{B} ,\Updelta_{A} ,\Updelta_{A} )r_{1A} + p(n_{A} ,N_{B} ,W_{A} ,W_{A} )p_{2A} \hfill \\ \end{gathered} $$
(87)
$$ p(n_{A} ,N_{B} ,\Updelta_{A} ,\Updelta_{A} )(r_{1A} + r_{2A} ) = p(n_{A} ,N_{B} ,W_{A} ,\Updelta_{A} )p_{1A} + p(n_{A} ,N_{B} ,\Updelta_{A} ,W_{A} )p_{2A} $$
(88)
$$ \begin{gathered} p(n_{A} ,N_{B} ,\Updelta_{A} ,W_{A} )(\mu_{2A} + r_{1A} + p_{2A} ) = p(n_{A} ,N_{B} ,\Updelta_{A} ,\Updelta_{A} )r_{2A} + p(n_{A} ,N_{B} ,W_{A} ,W_{A} )p_{1A} \hfill \, + p(n_{A} + 1,N_{B} ,\Updelta_{A} ,W_{A} )\mu_{2A} \hfill \\ \end{gathered} $$
(89)
$$ \begin{gathered} p(n_{A} ,N_{B} ,W_{A} ,W_{B} )(\mu_{1A} + \mu_{2B} + p_{1A} + p_{2B} ) = p(n_{A} ,N_{B} ,\Updelta_{A} ,W_{B} )r_{1A} + p(n_{A} ,N_{B} ,W_{A} ,S_{B} )s_{2B} + p(n_{A} - 1,N_{B} ,W_{A} ,W_{B} )\mu_{1A} + p(n_{A} ,N_{B} ,W_{A} ,\Updelta_{B} )r_{2B} \\ \end{gathered} $$
(90)
$$ \begin{gathered} p(n_{A} ,N_{B} ,\Updelta_{A} ,W_{B} )(\mu_{2B} + r_{1A} + p_{2B} ) = p(n_{A} ,N_{B} ,\Updelta_{A} ,S_{B} )s_{2B} + p(n_{A} ,N_{B} ,\Updelta_{A} ,\Updelta_{B} )r_{2B} \hfill \, + p(n_{A} ,N_{B} ,W_{A} ,W_{B} )p_{1A} \hfill \\ \end{gathered} $$
(91)

For \( n_{A} = N_{A} - 1{\text{ and }}n_{B} = N_{B} \) only Eq. 85 is as follows:

$$ \begin{gathered} p(N_{A} - 1,N_{B} ,S_{A} ,W_{A} )(s_{1A} + \mu_{2A} + p_{2A} ) = p(N_{A} ,N_{B} ,W_{B} ,W_{A} )\mu_{2A} + p(N_{A} - 1,N_{B} - 1,W_{B} ,W_{A} )\mu_{1B} + p(N_{A} - 1,N_{B} ,S_{A} ,\Updelta_{A} )r_{2A} \\ \end{gathered} $$
(92)

BE Group IX. \( n_{A} = N_{A} {\text{ and }}n_{B} = N_{B} \)

$$ p(N_{A} ,N_{B} ,W_{A} ,\Updelta_{A} )r_{2A} = p(N_{A} ,N_{B} ,W_{A} ,W_{A} )p_{2A} + p(N_{A} - 1,N_{B} ,W_{A} ,\Updelta_{A} )\mu_{1A} $$
(93)
$$ p(N_{A} ,N_{B} ,W_{A} ,S_{B} )s_{2B} = p(N_{A} - 1,N_{B} ,W_{A} ,S_{B} )\mu_{1A} $$
(94)
$$ p(N_{A} ,N_{B} ,W_{A} ,\Updelta_{B} )r_{2B} = p(N_{A} ,N_{B} ,W_{A} ,W_{B} )p_{2B} + p(N_{A} - 1,N_{B} ,W_{A} ,\Updelta_{B} )\mu_{1A} $$
(95)
$$ p(N_{A} ,N_{B} ,W_{B} ,S_{A} )s_{2A} = p(N_{A} ,N_{B} - 1,W_{B} ,S_{A} )\mu_{1B} $$
(96)
$$ p(N_{A} ,N_{B} ,W_{B} ,\Updelta_{A} )r_{2A} = p(N_{A} ,N_{B} ,W_{B} ,W_{A} )p_{2A} + p(N_{A} ,N_{B} - 1,W_{B} ,\Updelta_{A} )\mu_{1B} $$
(97)
$$ p(N_{A} ,N_{B} ,W_{B} ,\Updelta_{B} )r_{2B} = p(N_{A} ,N_{B} ,W_{B} ,W_{B} )p_{2B} + p(N_{A} ,N_{B} - 1,W_{B} ,\Updelta_{B} )\mu_{1B} $$
(98)
$$ p(N_{A} ,N_{B} ,W_{A} ,W_{A} )(\mu_{2A} + p_{2A} ) = p(N_{A} - 1,N_{B} ,W_{A} ,W_{A} )\mu_{1A} + p(N_{A} ,N_{B} ,W_{A} ,\Updelta_{A} )r_{2A} $$
(99)
$$ \begin{gathered} p(N_{A} ,N_{B} ,W_{A} ,W_{B} )(\mu_{2B} + p_{2B} ) = p(N_{A} - 1,N_{B} ,W_{A} ,W_{B} )\mu_{1A} + p(N_{A} ,N_{B} ,W_{A} ,S_{B} )s_{2B} + p(N_{A} ,N_{B} ,W_{A} ,\Updelta_{B} )r_{2B} \\ \end{gathered} $$
(100)
$$ \begin{gathered} p(N_{A} ,N_{B} ,W_{B} ,W_{A} )(\mu_{2A} + p_{2A} ) = p(N_{A} ,N_{B} - 1,W_{B} ,W_{A} )\mu_{1B} + p(N_{A} ,N_{B} ,W_{B} ,S_{A} )s_{2A} + p(N_{A} ,N_{B} ,W_{B} ,\Updelta_{A} )r_{2A} \\ \end{gathered} $$
(101)
$$ p(N_{A} ,N_{B} ,W_{B} ,W_{B} )(\mu_{2B} + p_{2B} ) = p(N_{A} ,N_{B} - 1,W_{B} ,W_{B} )\mu_{1B} + p(N_{A} ,N_{B} ,W_{B} ,\Updelta_{B} )r_{2B} $$
(102)

Appendix 2: Solution methodology

The solution method can be described in the following three steps:

2.1 Step 1: Set the basic variables

The steady state probabilities of the lower boundary states (i.e., states where both buffer levels are zero) are all set as basic variables. In addition, the following steady state probabilities are also set as basic variables:

  1. 1.

    \( p(n_{A},0,W_{A},S_{A}),\quad {\text{for}}\;(1 \le n_{A} \le N_{A} - 1) \)

  2. 2.

    \( p(n_{A},0,\Updelta_{A},S_{A}),\quad {\text{for}}\;(1 \le n_{A} \le N_{A} - 1) \)

  3. 3.

    \( p(0,n_{B},W_{B},S_{B}),\quad {\text{for}}\;(1 \le n_{B} \le N_{B} - 1) \)

  4. 4.

    \( p(0,n_{B},\Updelta_{B},S_{B}),\quad {\text{for}}\;(1 \le n_{B} \le N_{B} - 1) \)

The reason for selecting the above steady state probabilities as basic variables is as follows: In the 2M2B model, there are no direct transitions from the internal states (defined in Table 1) to the lower boundary states (i.e. in balance Eqs. 514 of Appendix 1). Therefore, expressing the internal states in terms of only the lower boundary states proves impossible. We therefore check the balance equations (BEs) of the states where one buffer level is zero and the other is internal (i.e., states where \( n_{A} = 0, \) \( 1 \le n_{B} \le N_{B} - 1 \) and \( n_{B} = 0, \) \( 1 \le n_{A} \le N_{A} - 1 \)). We find that the BEs for the particular states listed above are the only BEs in these groups (BE groups II and IV of Appendix 1) that include internal states. Therefore we select these steady state probabilities also as basic variables.

2.2 Step 2: Solve for the steady state probabilities of all other states in terms of the basic variables

The non-basic variables are then expressed in terms of the basic variables using the BEs of Appendix 1 in the following sequence. The BEs are categorized into various groups as defined in Table 1 of Sect. 3.4.

BE Group I:

Express the following steady state probabilities in terms of the basic variables using BEs Eqs. 514 sequentially:

$$ p(1,0,W_{A},W_{A}),p(0,1,W_{A},W_{B}),p(0,1,S_{A},W_{B}),p(1,0,\Updelta_{A},W_{A}),p(0,1,\Updelta_{A},W_{B}),p(1,0,W_{B},W_{A}),p(0,1,W_{B},W_{B}),p(1,0,S_{B},W_{A}),p(1,0,\Updelta_{B},W_{A}) $$

BE Group II:

 

FOR \( (n_{A} = 1;n_{A} \le N_{A} - 1;n_{A} + + ) \)

  IF \( (n_{A} = = 1) \)

    Express \( p(1,1,W_{A},W_{B}),p(1,0,\Updelta_{A},\Updelta_{A}),p(1,0,W_{A},\Updelta_{A}) \) in terms of the basic variables using BEs Eqs. 27, 19 and 17, sequentially

  ENDIF

  Express \( p(n_{A},0,\Updelta_{A},\Updelta_{A}) \) in terms of the basic variables using BE Eq. 19

  IF \( (n_{A} \le N_{A} - 2) \)

    Express \( p(n_{A} + 1,0,W_{A},W_{A}),p(n_{A} + 1,0,\Updelta_{A},W_{A}) \) in terms of the basic variables using BEs Eqs. 15 and 18 sequentially

  ENDIF

  IF \( (n_{A} \ge 2) \)

    Express \( p(n_{A},0,W_{A},\Updelta_{A}),p(n_{A},1,W_{A},W_{B}) \) in terms of the basic variables using BEs Eqs. 16 and 17, sequentially

  ENDIF

    Express the following steady state probabilities in terms of the basic variables using BEs Eqs. 2026 sequentially:

\( p(n_{A},1,\Updelta_{A},W_{B}),p(n_{A} + 1,0,S_{B},W_{A}),p(n_{A},0,S_{B},\Updelta_{A}),p(n_{A} + 1,0,W_{B},W_{A}),p(n_{A},0,W_{B},\Updelta_{A}),p(n_{A} + 1,0,\Updelta_{B},W_{A}),p(n_{A},0,\Updelta_{B},\Updelta_{A}) \)

END

BE Group III:

Express the following steady state probabilities in terms of the basic variables using BEs Eqs. 2836 sequentially:

$$ p(N_{A},0,S_{B},W_{A}),p(N_{A},0,S_{B},\Updelta_{A}),p(N_{A},0,W_{B},\Updelta_{A}),p(N_{A},0,\Updelta_{B},\Updelta_{A}),p(N_{A},0,W_{B},S_{A}),p(N_{A},1,W_{B},W_{B}),p(N_{A},1,S_{B},W_{B}),p(N_{A},0,\Updelta_{B},S_{A}),p(N_{A},1,\Updelta_{B},W_{B}) $$

BE Group IV:

 

FOR \( (n_{B} = 1;n_{B} \le N_{B} - 1;n_{B} + + ) \)

  IF \( (n_{B} = = 1) \)

    Express \( p(1,1,W_{B},W_{A}),p(0,1,\Updelta_{B},\Updelta_{B}),p(0,1,W_{B},\Updelta_{B}) \) in terms of the basic variables using BEs Eqs. 39, 41 and 49, sequentially

  ENDIF

  Express \( p(0,n_{B},\Updelta_{B},\Updelta_{B}) \) in terms of the basic variables using BE Eq. 41

  IF \( (n_{B} \le N_{B} - 2) \)

    Express \( p(0,n_{B} + 1,W_{B},W_{B}),p(0,n_{B} + 1,\Updelta_{B},W_{B}) \) in terms of the basic variables using BEs Eqs. 37 and 41, sequentially

  ENDIF

  IF \( (n_{B} \ge 2) \)

    Express \( p(0,n_{B},W_{B},\Updelta_{B}) \) in terms of the basic variables using BE Eq. 39

    Express \( p(1,n_{B},W_{B},W_{A}) \) in terms of the basic variables using BE Eq. 35

  ENDIF

  Express the following steady state probabilities in terms of the basic variables using BEs Eqs. 4248 sequentially:

\( p(1,n_{B},\Updelta_{B},W_{A}),p(0,n_{B} + 1,S_{A},W_{B}),p(0,n_{B},S_{A},\Updelta_{B}),p(0,n_{B} + 1,W_{A},W_{B}),p(0,n_{B},W_{A},\Updelta_{B}),p(0,n_{B} + 1,\Updelta_{A},W_{B}),p(0,n_{B},\Updelta_{A},\Updelta_{B}) \)

END

BE Group V:

Express the following steady state probabilities in terms of the basic variables using BEs Eqs. 5058 sequentially:

$$ p(0,N_{B},S_{A},W_{B}),p(0,N_{B},S_{A},\Updelta_{B}),p(0,N_{B},W_{A},\Updelta_{B}),p(0,N_{B},\Updelta_{A},\Updelta_{B}),p(0,N_{B},W_{A},S_{B}),p(1,N_{B},W_{A},W_{A}),p(1,N_{B},S_{A},W_{A}),p(0,N_{B},\Updelta_{A},S_{B}),p(1,N_{B},\Updelta_{A},W_{A}) $$

BE Group VI:

 

FOR \( (n_{A} = 1;n_{A} \le N_{A} - 1;n_{A} + + ) \)

  FOR \( (n_{B} = 1;n_{B} \le N_{B} - 1;n_{B} + + ) \)

    Express the following steady state probabilities in terms of the basic variables using BEs Eqs. 5966 sequentially:

    \( p(n_{A},n_{B},W_{A},\Updelta_{B}),p(n_{A},n_{B},\Updelta_{A},\Updelta_{B}),p(n_{A},n_{B} + 1,W_{A},W_{B}),p(n_{A},n_{B} + 1,\Updelta_{A},W_{B}),p(n_{A},n_{B},W_{B},\Updelta_{A}),p(n_{A},n_{B},\Updelta_{B},\Updelta_{A}),p(n_{A} + 1,n_{B},W_{B},W_{A}),p(n_{A} + 1,n_{B},\Updelta_{B},W_{A}) \)

  END

END

BE Group VII:

 

FOR \( (n_{B} = 1;n_{B} \le N_{B} - 1;n_{B} + + ) \)

  Express the following steady state probabilities in terms of the basic variables using BEs Eqs. 6770 sequentially:

\( p(N_{A},n_{B},W_{B},S_{A}),p(N_{A},n_{B},\Updelta_{B},S_{A}),p(N_{A},n_{B},W_{B},\Updelta_{A}),p(N_{A},n_{B},\Updelta_{B},\Updelta_{A}) \)

  IF \( (n_{B} \le N_{B} - 2) \)

    Express \( p(N_{A},n_{B},S_{B},\Updelta_{B}) \) in terms of the basic variables using BE Eq. 71

    Express \( p(N_{A},n_{B} + 1,S_{B},W_{B}) \) in terms of the basic variables using BE Eq. 72

  ELSE

    Express\( p(N_{A},N_{B},W_{A},W_{B}) \) in terms of the basic variables using BE Eq. 79

  ENDIF

  Express the following steady state probabilities in terms of the basic variables using BEs Eqs. 7376 sequentially:

\( p(N_{A},n_{B},W_{B},W_{B}),p(N_{A},n_{B},W_{B},\Updelta_{B}),p(N_{A},n_{B},\Updelta_{B},\Updelta_{B}),p(N_{A},n_{B} + 1,\Updelta_{B},W_{B}) \)

END

BE Group VIII:

 

FOR \( (n_{A} = 1;n_{A} \le N_{A} - 1;n_{A} + + ) \)

  Express the following steady state probabilities in terms of the basic variables using BEs Eqs. 8083 sequentially:

\( p(n_{A},N_{B},W_{A},S_{B}),p(n_{A},N_{B},\Updelta_{A},S_{B}),p(n_{A},N_{B},W_{A},\Updelta_{B}),p(n_{A},N_{B},\Updelta_{A},\Updelta_{B}) \)

  IF \( (n_{A} \le N_{A} - 2) \)

    Express \( p(n_{A},N_{B},S_{A},\Updelta_{A}) \) in terms of the basic variables using BE Eq. 84

    Express \( p(n_{A} + 1,N_{B},S_{A},W_{A}) \) in terms of the basic variables using BE Eq. 85

  ELSE

    Express \( p(N_{A},N_{B},W_{B},W_{A}) \)in terms of the basic variables using BE Eq. 92

  ENDIF

  Express the following steady state probabilities in terms of the basic variables using BEs Eqs. 8689 sequentially

\( p(n_{A},N_{B},W_{A},W_{A}),p(n_{A},N_{B},W_{A},\Updelta_{A}),p(n_{A},N_{B},\Updelta_{A},\Updelta_{A}),p(n_{A},N_{B},\Updelta_{A},W_{A}) \)

END

BE Group IX:

Express the following steady state probabilities in terms of the basic variables using BEs Eqs. 9398 sequentially:

$$ p(N_{A},N_{B},W_{A},\Updelta_{A}),p(N_{A},N_{B},W_{A},S_{B}),p(N_{A},N_{B},W_{A},\Updelta_{B}),p(N_{A},N_{B},W_{B},S_{A}),p(N_{A},N_{B},W_{B},\Updelta_{A}),p(N_{A},N_{B},W_{B},\Updelta_{B}) $$

2.3 Step 3: Using the normalization equation and remaining equations from Step 2 to solve for the basic variables

In Step 2, the non-basic variables were expressed in terms of the basic variables using the BEs. The following BEs were however not used in Step 2:

BEs Eqs. 15 and 18 from BE group II for \( n_{A} = N_{A} - 1 \)

BEs Eqs. 16 and 17 from BE group II for \( n_{A} = 1 \)

BEs Eqs. 37 and 40 from BE group IV for \( n_{B} = N_{B} - 1 \)

BEs Eqs. 38 and 39 from BE group IV for \( n_{B} = 1 \)

BEs Eqs. 77 and 78 from BE group VII for \( (n_{B} = 1;n_{B} \le N_{B} - 1;n_{B} + + ) \)

BEs Eqs. 90 and 91 from BE group VIII for \( (n_{A} = 1;n_{A} \le N_{A} - 1;n_{A} + + ) \)

BEs Eqs. 99102 from BE group IX

$$ {\text{Total remaining BEs}} = 2*(N_{A} + N_{B}) + 6 $$

Choosing any of these \( 2*(N_{A} + N_{B}) + 5 \) BEs and the normalization equation, the \( 2*(N_{A} + N_{B}) + 6 \) equations are solved for the basic variables set in Step 1. Once the basic variables are calculated, since the non-basic variables were expressed in terms of the basic variables, all the steady state probabilities can be determined.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senanayake, C.D., Subramaniam, V. Analysis of a two-stage, flexible production system with unreliable machines, finite buffers and non-negligible setups. Flex Serv Manuf J 25, 414–442 (2013). https://doi.org/10.1007/s10696-011-9115-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-011-9115-2

Keywords

Navigation