Skip to main content

Advertisement

Log in

Modeling order assignment for semiconductor assembly hierarchical outsourcing and developing the decision support system

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

Outsourcing has become increasingly important in supply chain management. As the semiconductor industry is capital-intensive, semiconductor manufacturing companies focus on wafer fabrication as their core competence and outsource assembly and testing to a number of specialized vendors. The involved decision-making has multiple objectives such as (1) minimizing the number of delayed orders, (2) minimizing the allocation ratio differences, (3) minimizing the assembly cost, and (4) minimizing the product changeover times. To meet these objectives in practice, this study proposes an approach that employs mixed integer linear programming and goal programming to integrate multiple objectives and operational feasibility by considering mass orders, order fulfillment, capacity limits, logistics timetables, and a rolling mechanism in a real setting. Furthermore, we developed an order assignment decision support system embedded with the proposed approach for assigning assembly outsourcing orders and validated the system in a semiconductor company in Taiwan. The results have shown the practical viability of the proposed approach in terms of decision quality and computational efficiency. This study concludes with empirical findings and a discussion of future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson E, Weitz BA (1986) Make-or-buy decisions: vertical integration and marketing productivity. Sloan Manag Rev 27(3):3–19

    Google Scholar 

  • Aouni B, Kettani O (2001) Goal programming model: a glorious history and a promising future. Eur J Oper Res 133:225–231

    Article  MathSciNet  Google Scholar 

  • Barney J (1991) Firm resources and sustained competitive advantage. J Manag 17(1):99–120

    Article  Google Scholar 

  • Barthélemy J (2001) The hidden costs of IT outsourcing. Sloan Manag Rev 42(3):60–69

    Google Scholar 

  • Buffa FB, Jackson WM (1983) A goal programming model for purchase planning. J Purch Mater Manag 19(3):27–34

    Google Scholar 

  • Cachon GP, Harker PT (2002) Competition and outsourcing with scale economies. Manag Sci 48(10):1314–1333

    Article  Google Scholar 

  • Chien C-F, Chen H-K, Wu J-Z, Hu C-H (2007) Constructing the OGE for promoting tool group productivity in semiconductor manufacturing. Int J Prod Res 45(3):509–524

    Article  MATH  Google Scholar 

  • Chien C-F, Dauzère-Pérès S, Ehm H, Fowler JW, Jiang Z, Krishnaswamy S, Mönch L, Uzsoy R (2008) Modeling and analysis of semiconductor manufacturing in a shrinking world: challenges and successes. In: Proceedings of the 2008 winter simulation conference, 2093–2099

  • Chien C-F, Chen Y, Peng J (2010a) Manufacturing intelligence for semiconductor demand forecast based on technology diffusion and product life cycle. Int J Prod Econ 128(2):496–509

    Article  Google Scholar 

  • Chien C-F, Wu J-Z, Wu C-C (2010b) A two-stage stochastic programming approach for new tape-out allocation decisions for demand fulfillment planning in semiconductor manufacturing. Flex Serv Manuf J (working paper)

  • Dataquest G (2008) Gartner Dataquest. Gartner Inc

  • Degraeve Z, Labro E, Roodhooft F (2000) An evaluation of vendor selection models from a total cost of ownership perspective. Eur J Oper Res 125(1):34–58

    Article  MathSciNet  MATH  Google Scholar 

  • Fine FC, Whitney DE (1996) Is the make-buy decision process a core competence? Working Paper, Massachusetts Institute of Technology

  • Fine CH, Vardan R, Pethick R, El-Hout J (2002) Rapid-response capability in value-chain design. Sloan Manag Rev 43(2):69–75

    Google Scholar 

  • Fisher ML (1997) What is the right supply chain for your product? Harvard Bus Rev 75(2):105–117

    Google Scholar 

  • Fleischmann BH, Meyer H, Wagner M (2000) Advanced planning. In: Stadtler H, Kilger C (eds) Supply chain management and advanced planning. Springer, Berlin, pp 71–96

    Google Scholar 

  • Gaonkar RS, Viswanadham N (2005) Strategic sourcing and collaborative planning in Internet-enabled supply chain networks producing multigeneration products. IEEE Trans Autom Sci Eng 2(1):54–66

    Article  Google Scholar 

  • Gottfredson M, Puryear R, Phillips S (2005) Strategic sourcing—from periphery to the core. Harvard Bus Rev 83(2):132–139

    Google Scholar 

  • Grunow M, Guenther HO, Yang G (2003) Plant co-ordination in pharmaceutics supply networks. OR Spectr 25(1):109–141

    Article  MATH  Google Scholar 

  • Hentenryck PV (1999) The OPL optimization programming language. MIT press, England

    Google Scholar 

  • Hiller FS, Lieberman GJ (2005) Introduction to operations research, 8th edn. McGraw-Hill, New York

    Google Scholar 

  • Hoecht A, Trott P (2006) Innovation risks of strategic outsourcing. Technovation 26(5–6):672–681

    Article  Google Scholar 

  • ILOG (2001),ILOG OPL Studio 3.5. ILOG Inc

  • Keskin BB, Üster H, Cetinkaya S (2010) Integration of strategic and tactical decisions for vendor selection. Comput Oper Res 37:2182–2191

    Article  MathSciNet  MATH  Google Scholar 

  • Kouvelis P, Milner JM (2002) Supply chain capacity and outsourcing decisions the dynamic interplay of demand and supply uncertainty. IIE Trans 34(8):717–728

    Google Scholar 

  • Kraljic P (1983) Purchasing must become supply management. Harvard Bus Rev 65(1):109–117

    Google Scholar 

  • Leachman R, Ding S, Chien C-F (2007) Economic efficiency analysis of wafer fabrication. IEEE Trans Autom Sci Eng 4(4):501–512

    Article  Google Scholar 

  • Lee Y-H, Jeong C-S, Moon C (2002) Advanced planning and scheduling with outsourcing in manufacturing supply chain. Comput Ind Eng 43(1/2):351–374

    Article  Google Scholar 

  • Li Y, Liu Y, Li M, Wu H (2008) Transformational offshore outsourcing: empirical evidence from alliances in China. J Oper Manag 26(2):257–274

    Article  Google Scholar 

  • Lin F-R, Shaw MJ (1998) Reengineering the order fulfillment process in supply chain networks. Int J Flex Manuf Syst 10(3):197–229

    Article  Google Scholar 

  • Lin Y-T, Lin C-L, Yu H-C, Tzeng G-H (2010) A novel hybrid MCDM approach for outsourcing vendor selection: a case study for a semiconductor company in Taiwan. Expert Syst Appl 37:4796–4804

    Article  Google Scholar 

  • Linder JC (2004) Transformational outsourcing. Sloan Manag Rev 45(2):52–58

    Google Scholar 

  • Mohr JJ, Sengupta S, Slater SF (2010) Mapping the outsourcing landscape. J Bus Strategy (online)

  • Nellore R, Söderquist K (2000) Strategic outsourcing through specifications. Omega 28(5):525–540

    Article  Google Scholar 

  • Nemhauser GL, Wolsey LA (1999) Integer and combinatorial optimization. Wiley, New York

    MATH  Google Scholar 

  • Qi X (2008) Coordinated logistics scheduling for in-house production and outsourcing. IEEE Trans Autom Sci Eng 5(1):188–192

    Article  Google Scholar 

  • Quinn JB (1999) Strategic outsourcing: knowledge capabilities. Sloan Manag Rev 40(4):9–21

    Google Scholar 

  • Quinn JB, Hilmer FG (1994) Strategic outsourcing. Sloan Manag Rev 35(3):43–55

    Google Scholar 

  • Rothaermel RT, Hitt MA, Jobe LA (2006) Balancing vertical integration and strategic outsourcing: effects on product portfolio, product success, and firm performance. Strateg Manag J 27(11):1033–1056

    Article  Google Scholar 

  • Sharpe M (1997) Outsourcing, organizational competitiveness and work. J Labor Res 18(4):535–549

    Article  Google Scholar 

  • Simchi-Levi D, Kaminsky P, Simichi-Levi E (2008) Designing and managing the supply chain: concepts, strategies, and cast studies, 3rd edn. McGraw-Hill/Irwin, New York

    Google Scholar 

  • Tamiz M, Jones DF, Romero C (1998) Goal programming for decision making: an overview of the current state-of-the-art. Eur J Oper Res 111:569–581

    Article  MATH  Google Scholar 

  • Tsai W-H, Lai C-W (2007) Outsourcing or capacity expansions: application of activity-based costing model on joint products decisions. Comput Oper Res 34(12):3666–3681

    Article  MATH  Google Scholar 

  • Venkatesan R (1992) Strategic sourcing: to make or not to make. Harvard Bus Rev 70(6):98–107

    Google Scholar 

  • Veugelersa R, Cassiman B (1999) Make and buy in innovation strategies evidence from Belgian manufacturing firms. Res Policy 28(1):63–80

    Article  Google Scholar 

  • Wadhwa V, Ravindran AR (2007) Vendor selection in outsourcing. Comput Oper Res 34:3725–3737

    Article  MATH  Google Scholar 

  • Wu J-Z, Chien C-F (2008) Modeling strategic semiconductor assembly outsourcing decisions based on empirical settings. OR Spectr 30(3):401–430

    Article  MathSciNet  Google Scholar 

  • Wu J-Z, Chien C-F, Hao X-C, Gen M (2010) A novel bi-vector encoding genetic algorithm for the simultaneous multiple resources scheduling problem. J Intell Manuf (forthcoming)

Download references

Acknowledgments

This research is partially supported by the National Science Council (NSC97-2221-E-007- 111-MY3; NSC99-2410-H-031-002) and Macronix International Co. Ltd, Taiwan. Special thanks go to domain experts including Dr. CY Lu, Paul Hsu, YL Whang, Fred Su, Hero Chen, TS Huang, Sophie Li, and Ryan Lin. The authors also appreciate the insightful and constructive comments from the editors of this special issue and anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jei-Zheng Wu.

Appendix: Numerical example

Appendix: Numerical example

Assume two qualified vendors {A, B} are considered and their relative shares of orders are 0.7 and 0.3. The six orders of three products {1, 2, 3} consuming the same material m will be outsourced to these two vendors. The planning horizon is 3-day. There are two daily transportation shuttles, i.e., day and night shuttles. Hence, the time buckets range from 0 to 5 = 3 × 2 − 1. Tables 3, 4, 5, 6, 7, 8, and 9 represent the detailed information which can derive a model of DOAP-GR structured as minimizing (23)–(26) subject to (27)–(102). The priorities of the objectives, in this order, consist of (1) minimizing the number of delayed orders, (2) minimizing the differences between the target and actual monetary value, (3) minimizing the assembly cost, and (4) minimizing the number of times of product changeover. ILOG® OPL® (ILOG 2001) solved the preemptive goal programming problem within one second on a personal computer with an Intel© Core™2 Quad CPU Q8200 at 2.33 and 3.21 GB RAM. The solution contained no delayed order and total allocation differences were 197 (Table 10). Three switch-ons happened on buckets 2, 3, 4, respectively for product 3 (order 6) in vendor A, product 2 (order 3) in vendor B, and product 3 (order 5) in vendor B.

$$ \min y_{1}^{1} + y_{3}^{2} + y_{3}^{3} + y_{3}^{4} + y_{5}^{5} + y_{5}^{6} $$
(23)
$$ \min r_{A}^{ + } + r_{A}^{ - } + r_{B}^{ + } + r_{B}^{ - } $$
(24)
$$ \begin{aligned} & \min \, 10x_{A0}^{1} + 20x_{A2}^{2} + 32x_{B1}^{3} + 32x_{B2}^{3} + 32x_{B3}^{3} + 48x_{B2}^{4} + 48x_{B3}^{4} \\ & \quad + 100x_{A2}^{5} + 100x_{A4}^{5} + 125x_{B2}^{5} + 125x_{B3}^{5} + 125x_{B4}^{5} + 125x_{B5}^{5} \\ & \quad + 120x_{A2}^{6} + 120x_{A4}^{6} + 150x_{B1}^{6} + 150x_{B2}^{6} + 150x_{B3}^{6} + 150x_{B4}^{6} + 150x_{B5}^{6} \\ \end{aligned} $$
(25)
$$ \min \phi_{A0}^{1} + \phi_{A2}^{1} + \phi_{A4}^{1} + \phi_{B1}^{2} + \phi_{B2}^{2} + \phi_{B3}^{2} + \phi_{B4}^{2} + \phi_{B5}^{2} + \phi_{A0}^{3} + \phi_{A2}^{3} + \phi_{A4}^{3} + \phi_{B1}^{3} + \phi_{B2}^{3} + \phi_{B3}^{3} + \phi_{B4}^{3} + \phi_{B5}^{3} $$
(26)
$$ x_{A0}^{1} + y_{0}^{1} = 1 $$
(27)
$$ y_{1}^{2} = 1 $$
(28)
$$ x_{B1}^{3} + y_{1}^{3} = 1 $$
(29)
$$ x_{B2}^{4} + y_{2}^{4} = 1 $$
(30)
$$ x_{A2}^{5} + x_{B2}^{5} + y_{2}^{5} = 1 $$
(31)
$$ x_{B1}^{6} + y_{1}^{6} = 1 $$
(32)
$$ y_{1}^{1} = y_{0}^{1} $$
(33)
$$ x_{A2}^{2} + y_{2}^{2} = y_{1}^{2} $$
(34)
$$ y_{3}^{2} = y_{2}^{2} $$
(35)
$$ x_{B2}^{3} + y_{2}^{3} = y_{1}^{3} $$
(36)
$$ x_{B3}^{3} + y_{3}^{3} = y_{2}^{3} $$
(37)
$$ x_{B3}^{4} + y_{3}^{4} = y_{2}^{4} $$
(38)
$$ x_{B3}^{5} + y_{3}^{5} = y_{2}^{5} $$
(39)
$$ x_{A4}^{5} + x_{B4}^{5} + y_{4}^{5} = y_{3}^{5} $$
(40)
$$ x_{B5}^{5} + y_{5}^{5} = y_{4}^{5} $$
(41)
$$ x_{A2}^{6} + x_{B2}^{6} + y_{2}^{6} = y_{1}^{6} $$
(42)
$$ x_{B3}^{6} + y_{3}^{6} = y_{2}^{6} $$
(43)
$$ x_{A4}^{6} + x_{B4}^{6} + y_{4}^{6} = y_{3}^{6} $$
(44)
$$ x_{B5}^{6} + y_{5}^{6} = y_{4}^{6} $$
(45)
$$ 10x_{A0}^{1} + z_{mA0} = 120 $$
(46)
$$ 20x_{B1}^{3} + 60x_{B1}^{6} + z_{mB1} = 160 $$
(47)
$$ 20x_{A2}^{2} + 50x_{A2}^{5} + 60x_{A2}^{6} + z_{mA2} = z_{mA0} $$
(48)
$$ 50x_{A4}^{5} + 60x_{A4}^{6} + z_{mA4} = z_{mA2} $$
(49)
$$ 20x_{B2}^{3} + 30x_{B2}^{4} + 50x_{B2}^{5} + 60x_{B2}^{6} + z_{mB2} = z_{mB1} $$
(50)
$$ 20x_{B3}^{3} + 30x_{B3}^{4} + 50x_{B3}^{5} + 60x_{B3}^{6} + z_{mB3} = z_{mB2} $$
(51)
$$ 50x_{B4}^{5} + 60x_{B4}^{6} + z_{mB4} = z_{mB3} $$
(52)
$$ 50x_{B5}^{5} + 60x_{B5}^{6} + z_{mB5} = z_{mB4} $$
(53)
$$ \begin{aligned} & 10x_{A0}^{1} + 20x_{A2}^{2} + 100x_{A2}^{5} + 100x_{A4}^{5} + 120x_{A2}^{6} + 120x_{A4}^{6} \\ & \quad = 0.7(10x_{A0}^{1} + 20x_{A2}^{2} + 32x_{B1}^{3} + 32x_{B2}^{3} + 32x_{B3}^{3} + 48x_{B2}^{4} + 48x_{B3}^{4} \\ & \quad \quad + 100x_{A2}^{5} + 100x_{A4}^{5} + 125x_{B2}^{5} + 125x_{B3}^{5} + 125x_{B4}^{5} + 125x_{B5}^{5} \\ & \quad \quad + 120x_{A2}^{6} + 120x_{A4}^{6} + 150x_{B1}^{6} + 150x_{B2}^{6} + 150x_{B3}^{6} + 150x_{B4}^{6} + 150x_{B5}^{6} ) + r_{A}^{ + } - r_{A}^{ - } \\ \end{aligned} $$
(54)
$$ \begin{aligned} & 32x_{B1}^{3} + 32x_{B2}^{3} + 32x_{B3}^{3} + 48x_{B2}^{4} + 48x_{B3}^{4} + 125x_{B2}^{5} + 125x_{B3}^{5} + 125x_{B4}^{5} + 125x_{B5}^{5} \\ & \quad \quad + 150x_{B1}^{6} + 150x_{B2}^{6} + 150x_{B3}^{6} + 150x_{B4}^{6} + 150x_{B5}^{6} \\ & \quad = 0.3(10x_{A0}^{1} + 20x_{A2}^{2} + 32x_{B1}^{3} + 32x_{B2}^{3} + 32x_{B3}^{3} + 48x_{B2}^{4} + 48x_{B3}^{4} \\ & \quad \quad + 100x_{A2}^{5} + 100x_{A4}^{5} + 125x_{B2}^{5} + 125x_{B3}^{5} + 125x_{B4}^{5} + 125x_{B5}^{5} \\ & \quad \quad + 120x_{A2}^{6} + 120x_{A4}^{6} + 150x_{B1}^{6} + 150x_{B2}^{6} + 150x_{B3}^{6} + 150x_{B4}^{6} + 150x_{B5}^{6} ) + r_{B}^{ + } - r_{B}^{ - } \\ \end{aligned} $$
(55)
$$ 10x_{A0}^{1} \le 10 $$
(56)
$$ 20x_{A2}^{1} \le 20 $$
(57)
$$ 50x_{A2}^{5} + 60x_{A2}^{6} + 50x_{A4}^{5} + 60x_{A4}^{6} \le 60 $$
(58)
$$ 20x_{B1}^{3} \le 30 $$
(59)
$$ 20x_{B2}^{3} + 20x_{B3}^{3} + 30x_{B2}^{4} + 30x_{B3}^{4} \le 30 $$
(60)
$$ 60x_{B1}^{6} + 50x_{B2}^{5} + 50x_{B3}^{5} + 60x_{B2}^{6} + 60x_{B3}^{6} + 50x_{B4}^{5} + 50x_{B5}^{5} + 60x_{B4}^{6} + 60x_{B5}^{6} \le 100 $$
(61)
$$ 50x_{B2}^{5} + 50x_{B3}^{5} \le 50 $$
(62)
$$ 50x_{B2}^{5} + 50x_{B3}^{5} + 60x_{B2}^{6} + 60x_{B3}^{6} + 50x_{B4}^{5} + 50x_{B5}^{5} + 60x_{B4}^{6} + 60x_{B5}^{6} \le 100 $$
(63)
$$ 50x_{B4}^{5} + 50x_{B5}^{5} \le 50 $$
(64)
$$ \theta_{A2}^{1} - \theta_{A0}^{1} \le \phi_{A2}^{1} $$
(65)
$$ \theta_{A4}^{1} - \theta_{A2}^{1} \le \phi_{A4}^{1} $$
(66)
$$ \theta_{A2}^{3} - \theta_{A0}^{3} \le \phi_{A2}^{3} $$
(67)
$$ \theta_{A4}^{3} - \theta_{A2}^{3} \le \phi_{A4}^{3} $$
(68)
$$ \theta_{B2}^{2} - \theta_{B1}^{2} \le \phi_{B2}^{2} $$
(69)
$$ \theta_{B3}^{2} - \theta_{B2}^{2} \le \phi_{B3}^{2} $$
(70)
$$ \theta_{B4}^{2} - \theta_{B3}^{2} \le \phi_{B4}^{2} $$
(71)
$$ \theta_{B5}^{2} - \theta_{B4}^{2} \le \phi_{B5}^{2} $$
(72)
$$ \theta_{B2}^{3} - \theta_{B1}^{3} \le \phi_{B2}^{3} $$
(73)
$$ \theta_{B3}^{3} - \theta_{B2}^{3} \le \phi_{B3}^{3} $$
(74)
$$ \theta_{B4}^{3} - \theta_{B3}^{3} \le \phi_{B4}^{3} $$
(75)
$$ \theta_{B5}^{3} - \theta_{B4}^{3} \le \phi_{B5}^{3} $$
(76)
$$ \theta_{A0}^{1} - 1 \le \phi_{A0}^{1} $$
(77)
$$ \theta_{B1}^{2} \le \phi_{B1}^{2} $$
(78)
$$ \theta_{A0}^{3} \le \phi_{A0}^{3} $$
(79)
$$ \theta_{B1}^{3} - 1 \le \phi_{B1}^{3} $$
(80)
$$ \theta_{A0}^{1} \le x_{A0}^{1} + x_{A0}^{2} \le 2\theta_{A0}^{1} $$
(81)
$$ \theta_{A2}^{1} \le 0 $$
(82)
$$ \theta_{A4}^{1} \le 0 $$
(83)
$$ \theta_{A0}^{3} \le 0 $$
(84)
$$ \theta_{A2}^{3} \le x_{A2}^{5} + x_{A2}^{6} \le 2\theta_{A2}^{3} $$
(85)
$$ \theta_{A4}^{3} \le x_{A4}^{5} + x_{A4}^{6} \le 2\theta_{A4}^{3} $$
(86)
$$ \theta_{B1}^{2} \le x_{B1}^{3} \le \theta_{B1}^{2} $$
(87)
$$ \theta_{B2}^{2} \le x_{B2}^{3} + x_{B2}^{4} \le 2\theta_{B2}^{2} $$
(88)
$$ \theta_{B3}^{2} \le x_{B3}^{3} + x_{B3}^{4} \le 2\theta_{B3}^{2} $$
(89)
$$ \theta_{B4}^{2} \le 0 $$
(90)
$$ \theta_{B5}^{2} \le 0 $$
(91)
$$ \theta_{B1}^{3} \le x_{B1}^{6} \le 2\theta_{B1}^{3} $$
(92)
$$ \theta_{B2}^{3} \le x_{B2}^{5} + x_{B2}^{6} \le 2\theta_{B2}^{3} $$
(93)
$$ \theta_{B3}^{3} \le x_{B3}^{5} + x_{B3}^{6} \le 2\theta_{B3}^{3} $$
(94)
$$ \theta_{B4}^{3} \le x_{B4}^{5} + x_{B4}^{6} \le 2\theta_{B4}^{3} $$
(95)
$$ \theta_{B5}^{3} \le x_{B5}^{5} + x_{B5}^{6} \le 2\theta_{B5}^{3} $$
(96)
$$ x_{A0}^{1} ,\,x_{A2}^{2} ,\,x_{B1}^{3} ,\,x_{B2}^{3} ,\,x_{B3}^{3} ,\,x_{B2}^{4} ,\,x_{B3}^{4} ,\,x_{A2}^{5} ,\,x_{A4}^{5} ,\,x_{B2}^{5} ,\,x_{B3}^{5} ,\,x_{B4}^{5} ,\,x_{B5}^{5} ,\,x_{A2}^{6} ,\,x_{A4}^{6} ,\,x_{B1}^{6} ,\,x_{B2}^{6} ,\,x_{B3}^{6} ,\,x_{B4}^{6} ,\,x_{B5}^{6} \in \{ 0,1\} $$
(97)
$$ y_{0}^{1} ,\,y_{1}^{1} ,\,y_{1}^{2} ,\,y_{2}^{2} ,\,y_{3}^{2} ,\,y_{1}^{3} ,\,y_{2}^{3} ,\,y_{3}^{3} ,\,y_{2}^{4} ,\,y_{3}^{4} ,\,y_{2}^{5} ,\,y_{3}^{5} ,\,y_{4}^{5} ,\,y_{5}^{5} ,\,y_{1}^{6} ,\,y_{2}^{6} ,\,y_{3}^{6} ,\,y_{4}^{6} ,\,y_{5}^{6} \in \{ 0,1\} $$
(98)
$$ z_{mA0} ,\,z_{mA2} ,\,z_{mA4} ,\,z_{mB1} ,\,z_{mB2} ,\,z_{mB3} ,\,z_{mB4} ,\,z_{mB5} \ge 0 $$
(99)
$$ 0 \le \phi_{A0}^{1} ,\,\phi_{A2}^{1} ,\,\phi_{A4}^{1} ,\,\phi_{B1}^{2} ,\,\phi_{B2}^{2} ,\,\phi_{B3}^{2} ,\,\phi_{B4}^{2} ,\,\phi_{B5}^{2} ,\,\phi_{A0}^{3} ,\,\phi_{A2}^{3} ,\,\phi_{A4}^{3} ,\,\phi_{B1}^{3} ,\,\phi_{B2}^{3} ,\,\phi_{B3}^{3} ,\,\phi_{B4}^{3} ,\,\phi_{B5}^{3} \le 1 $$
(100)
$$ \theta_{A0}^{1} ,\,\theta_{A2}^{1} ,\,\theta_{A4}^{1} ,\,\theta_{B1}^{2} ,\,\theta_{B2}^{2} ,\,\theta_{B3}^{2} ,\,\theta_{B4}^{2} ,\,\theta_{B5}^{2} ,\,\theta_{A0}^{3} ,\,\theta_{A2}^{3} ,\,\theta_{A4}^{3} ,\,\theta_{B1}^{3} ,\,\theta_{B2}^{3} ,\,\theta_{B3}^{3} ,\,\theta_{B4}^{3} ,\,\theta_{B5}^{3} \in \{ 0,1\} $$
(101)
$$ r_{A}^{ + } ,\,r_{A}^{ - } ,\,r_{B}^{ + } ,\,r_{B}^{ - } \ge 0 $$
(102)
Table 3 Order data
Table 4 Product data
Table 5 Vendor data
Table 6 Bucket-related data
Table 7 Capacity data (\( C_{vt}^{p} \))
Table 8 Consumed capacity data (\( \bar{C}_{vt}^{p} \))
Table 9 Adjusted capacity data (\( \tilde{C}_{vt}^{p} \))
Table 10 Order assignment (\( x_{vb}^{j} \))

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chien, CF., Wu, JZ. & Weng, YD. Modeling order assignment for semiconductor assembly hierarchical outsourcing and developing the decision support system. Flex Serv Manuf J 22, 109–139 (2010). https://doi.org/10.1007/s10696-010-9073-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-010-9073-0

Keywords

Navigation