Skip to main content
Log in

Pharmacokinetics and tissue distribution of florfenicol and florfenicol amine in snubnose pompano (Trachinotus blochii) following oral administration

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The present study reports the comparative pharmacokinetic profiles of florfenicol and its metabolite (florfenicol amine, FFA) in Trachinotus blochii under tropical marine conditions (salinity: 35 ± 1.4‰; temperature: 28.8 ± 0.54 °C) following a single in-feed oral administration of the recommended dose (15 mg/Kg). Furthermore, the study investigated the distribution of these two compounds in nine different tissues. The maximum florfenicol concentrations (Cmax) in plasma and tissues were observed within five hours (Tmax), except for bile. The Cmax ranged from 572 to 1954 ng/g or ml and was in the intestine > bile > muscle + skin > liver > gill = heart > plasma > kidney = spleen. The elimination half-life of FFC was significantly slower in the bile (38.25 ± 4.46 h). The AUC tissue/plasma was highest for bile (3.77 ± 0.22), followed by intestine > muscle + skin > heart > liver > kidney = gill = spleen. Tmax and t1/2β were slower, and Cmax was lower for FFA than florfenicol in all tissues except Cmax of the kidney and bile. FFA t1/2β was exceptionally slower in the kidney (46.01 ± 8.2 h). Interestingly, reaching an apparent distribution rate of > 0.5 was comparatively faster in the kidney, liver, and gills than in other tissues. The highest apparent metabolic rate was in the kidney (0.95 ± 0.01) and the lowest in plasma (0.41 ± 0.01). The generated data can be applied for formulating efficient therapeutic protocols in T. blochii, a promising mariculture species.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Amit R, Subodh SG, Aklakur M (2017) Prospects of medicated feed in aquaculture. Nutr Food Sci Int J 3(4):555617. https://doi.org/10.19080/NFSIJ.2017.03.555617

  • Carty D, Bowker JD, Bowman MP, Erdahl DA (2007) Calculate amount of aquaflor (florfenicol, 50%) to add to fish feed. Drug research information bulletin. The U.S. Fish and Wildlife Service, Aquatic Animal Drug Approval Partnership Program, 4050, Bridger Canyon Road, Bozeman, Montana, 59715, USA

  • de Ocenda VR, Almeida-Prieto S, Luzardo-Álvarez A, Barja JL, Otero-Espinar FJ, Blanco-Méndez J (2017) Pharmacokineticmodel of florfenicol in turbot (Scophthalmus maximus): establishment of optimal dosage and administration in medicated feed. J Fish Dis 40(3):411–424. https://doi.org/10.1111/jfd.12525

    Article  CAS  PubMed  Google Scholar 

  • du Sert P, Nathalie AA, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, Hurst V, Karp NA, Lazic SE, Lidster K, MacCallum CJ, Macleod M, Pearl EJ, Petersen OH, Rawle F, Reynolds P, Rooney K, Sena ES, Silberberg SD, Steckler T, Würbel H (2020) Reporting animal research explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biol 18:e3000411. https://doi.org/10.1371/journal.pbio.3000411

    Article  CAS  Google Scholar 

  • EC (2021) Commission Regulation (EU) no 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin, 02010R0037–20210506. https://health.ec.europa.eu/system/files/2016-11/reg_2010_37_en_0.pdf. Accessed 10 Nov 2022

  • EMA (2000) Florfenicol: summary report of the committee for veterinary medicinal products (extension to fish). EMEA/2001. https://www.ema.europa.eu/en/documents/mrl-report/florfenicol-extension-fish-summary-report-5-committee-veterinary-medicinal-products_en.pdf. Accessed 21 Mar 2023

  • European Union (2008) Guidelines for the implementation of decision 2002/657/EC (2008) Doc. SANCO/2004/2726-rev 4, https://ec.europa.eu/food/system/files/2016-10/cs_vet-med-residues_cons_2004-2726rev4_en.pdf. Accessed on 30 November 2021

  • European Union (2002) Commission decision 2002/657/EC of 12 August 2002 (2002) Off J Eur Commun 221: 8–36

  • FAO (Food and Agriculture Organization of the United Nations), 2021. Cultured aquatic species information programme. Trachinotus spp. (T. carolinus, T. blochii) https://www.fao.org/fishery/culturedspecies/Trachinotus_spp/en Accessed on 30/ 11/

  • Fayyaz A, Ranta VP, Toropainen E, Vellonen KS, Valtari A, Puranen J., ... Del Amo EM (2020) Topical ocular pharmacokinetics and bioavailability for a cocktail of atenolol, timolol and betaxolol in rabbits. Eur J Pharmaceutical Sci 155:105553

  • Feng JB, Jia XP, Li LD (2008) Tissue distribution and elimination of florfenicol in tilapia (Oreochromis niloticus × O. caureus) after a single oral administration in freshwater and seawater at 28°C. Aquaculture 276:29–35. https://doi.org/10.1016/j.aquaculture.2008.01.002

    Article  CAS  Google Scholar 

  • Feng JB, Jia XP (2009) Single dose pharmacokinetic study of flofenicol in tilapia (Oreochromis niloticus x O. aureus) held in freshwater at 22 C. Aquaculture 289:129–133

    Article  CAS  Google Scholar 

  • Feng JB, Huang DR, Zhong M, Liu P, Dong JD (2016) Pharmacokinetics of florfenicol and behaviour of its metabolite florfenicol amine in orange-spotted grouper (Epinephelus coioides) after oral administration. J Fish Dis 39(7):833–843

    Article  CAS  PubMed  Google Scholar 

  • Feng JB, Ruan HT, Chen HG, Luo JZ, Dong JD (2018) Pharmacokinetics of florfenicol in the orange-spotted grouper, epinephelus coioides, following oral administration in warm seawater. J World Aquac Soc 49:1058–1067. https://doi.org/10.1111/jwas.12509

    Article  CAS  Google Scholar 

  • Horsberg TE, Martinsen B, Varma KJ (1994) The disposition of 14C-florfenicol in Atlantic salmon (Salmo salar). Aquaculture 122:97–106

    Article  CAS  Google Scholar 

  • Horsberg TE, Hoff KA, Nordmo R (1996) Pharmacokinetics offlorfenicol and its metabolite florfenicol amine in atlantic salmon. J Aquatic Anim Health 8(4):292–301. https://doi.org/10.1577/1548-8667(1996)008%3c0292:POFAIM%3e2.3.CO;2

    Article  Google Scholar 

  • Jayakumar R, Nazar AKA, Tamilmani G, Sakthivel M, Kalidas C, Ramesh Kumar P, Hanumanta RG, Gopakumar G (2014) Evaluation of growth and production performance of hatchery produced silver pompano Trachinotus blochii (Lacépède, 1801) fingerlings under brackishwater pond farming in India. Ind J Fish 61(3):58–62

    Google Scholar 

  • Killen SS, Atkinson D, Glazier DS (2010) The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature. Ecol Lett 13:184–193

    Article  PubMed  Google Scholar 

  • Kverme KO, Haugland GT, Hannisdal R, Kallekleiv M, Colquhoun DJ, Lunestad BT, Wergeland HI, Samuelsen OB (2019) Pharmacokinetics of florfenicol in lumpfish (Cyclopterus lumpus L.) after a single oral administration. Aquaculture 512:734279. https://doi.org/10.1016/j.aquaculture.2019.734279

    Article  CAS  Google Scholar 

  • Lee W-Y, Lan K-W, Chang H-H, Naimullah M (2022) Residency and swimming behavior of Acanthopagrus schlegelii, Trachinotus blochii, and Acanthopagrus latus in relation to artificial reef models in a captivity experiment. Appl Anim Behav Sci 257:105778. https://doi.org/10.1016/j.applanim.2022.105778

  • Lim JH, Kim MS, Hwang YH, Song IB, Park BK, Yun HI (2010) Plasma and tissue depletion of florfenicol in olive flounder (Paralichthys olivaceus) after oral administration. Aquaculture 307(1):71–74. https://doi.org/10.1016/j.aquaculture.2010.07.003

    Article  CAS  Google Scholar 

  • Ma R, Wang Y, Zou X, Hu K, Sun B, Fang W, Fu G, Yang X (2017) Pharmacokinetics of sulfamethoxazole and trimethoprim in Pacific white shrimp, Litopenaeus vannamei, after oral administration of single-dose and multiple-dose. Env Toxicol Pharmacol 1(52):90–98

    Article  Google Scholar 

  • Mallik SK, Shahi N, Pathak R, Kala K, Patil PK, Singh B, Rajisha R, Krishna N, Pandey PK (2023) Pharmacokinetics and biosafety evaluation of a veterinary drug florfenicol in rainbow trout, Oncorhynchus mykiss (Walbaum 1792) as a model cultivable fish species in temperate water. Frontiers in Pharmacol 14:1033170

    Article  CAS  Google Scholar 

  • Martinsen B, Horsberg T, Varma K, Sams R (1993) Single dose pharmacokinetic study of florfenicol in Atlantic salmon (Salmo salar) in seawater at 11°C. Aquaculture 112:1–11

    Article  CAS  Google Scholar 

  • Nejad AJ, Peyghan R, Varzi HN, Shahriyari A (2017) Florfenicol pharmacokinetics following intravenous and oral administrations and its elimination after oral and bath administrations in common carp (Cyprinus carpio). In: Veterinary Research Forum (Vol. 8, No. 4). Faculty of Veterinary Medicine, Urmia University, Urmia, Iran, p 327

  • Park BK, Lim JH, Kim MS, Yun HI (2006) Pharmacokinetics of florfenicol and its metabolite, florfenicol amine, in the Korean catfish (Silurus asotus). J Vet Pharmacol Ther 29(1):37–40. https://doi.org/10.1111/j.1365-2885.2006.00709.x

    Article  CAS  PubMed  Google Scholar 

  • Paterson IK, Hoyle A, Ochoa G, Baker-Austin C, Taylor NGH (2016) Optimising antibiotic usage to treat bacterial infections. Sci Rep 6:37853. https://doi.org/10.1038/srep37853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persky AM (2013) Foundations in pharmacokinetics. UNC Chapel Hill, Eshelman School of Pharmacy 1–252 (Google Scholar)

  • Rairat T, Hsieh CY, Thongpiam W, Sung CH, Chou CC (2019a) Temperature-dependent pharmacokinetics of florfenicol in Nile tilapia (Oreochromis niloticus) following single oral and intravenous administration. Aquaculture 503:483–488. https://doi.org/10.1016/j.aquaculture.2018.12.081

    Article  CAS  Google Scholar 

  • Rairat T, Hsieh CY, Thongpiam W, Chou CC (2019b) Pharmacokinetic–pharmacodynamic modelling for the determination of optimal dosing regimen of florfenicol in Nile tilapia (Oreochromis niloticus) at different water temperatures and antimicrobial susceptibility levels. J Fish Dis 42(8):1181–1190

    CAS  PubMed  Google Scholar 

  • Rairat T, Thongpiam W, Hsieh CY, Liu YK, Tunkijjanukij S, Chou CC (2020) Salinity-dependent pharmacokinetics of florfenicol in Nile tilapia (Oreochromis niloticus) and its implication in optimal dosing regimen. Aquaculture 519:734900. https://doi.org/10.1016/j.aquaculture.2019.734900

    Article  CAS  Google Scholar 

  • Rairat T, Kumphaphat S, Chuchird N, Srisapoome P, Phansawat P, Keetanon A, Liu Y, Chou CC (2022) Pharmacokinetics, optimal dosages and withdrawal time of florfenicol in Asian seabass (Lates calcarifer) after oral administration via medicated feed. J Fish Dis. https://doi.org/10.1111/jfd.13719

    Article  PubMed  Google Scholar 

  • Riviere JE (1997) Basic principles and techniques of pharmacokinetic modeling. J Zoo Wildl Med 28:3–19

    CAS  PubMed  Google Scholar 

  • Samanidou VF, Evaggelopoulou EN (2007) Analytical strategies to determine antibiotic residues in fish. J Sep Sci 30(16):2549–2569. https://doi.org/10.1002/jssc.200700252

  • Samuelsen OB, Bergh O, Ervik A (2003) Pharmacokinetics of florfenicol in cod Gadus morhua and in vitro antibacterial activity against Vibrio anguillarum. Dis Aquat Org 56(2):127–133

    Article  CAS  Google Scholar 

  • San Martín B, Fresno M, Cornejo J, Godoy M, Ibarra R, Vidal R, Araneda M, Anadón A, Lapierre L (2019) Optimization of florfenicol dose against Piscirickettsia salmonis in Salmo salar through PK/PD studies. PLoS One 14:e0215174. https://doi.org/10.1371/journal.pone.0215174

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma KSR, Sumithra TG, Rameshkumar P, Anikuttan K, Gop AP, Joshy A, Prasad V, Suja G, Rajisha R, Panda SK, Tamilmani G (2023) Assessment of biosafety and fillet-residues after florfenicol exposures in Trachinotus blochii to ensure safe-applications in disease incidences. Turkish J Fish Aquatic Sci 23(7):TRJFAS22862. https://doi.org/10.4194/TRJFAS22862

  • Sumithra TG, Gangadharan S, Prasad V, Joshy A, Nair AV, Sharma SRK, Patil PK (2022) Therapeutic efficacy evaluation of florfenicol against Vibrio harveyi in snubnose pompano (Trachinotus blochii). Aquacult Res 53(13):4887–4891

    Article  CAS  Google Scholar 

  • Sun YX, Zhao HY, Shan Q, Zhu S, Zeng DP, Liu ZC (2010) Tissue distribution and elimination of florfenicol in crucian carp (Carassius auratus cuvieri) after a single dose intramuscular or oral administration. Aquaculture 309(1–4):82–85

    Article  CAS  Google Scholar 

  • Teles JA, Castello Branco LC, Del Bianchi M, Pilarski F, Reyes FG (2016) Pharmacokinetic study of enrofloxacin in Nile tilapia (Oreochromis niloticus) after a single oral administration in medicated feed. J Vet Pharmacol Ther 39(2):205–208

    Article  CAS  PubMed  Google Scholar 

  • USFDA (US Food and Drug Administration) (2008) Approved aquaculture drugs. https://www.fda.gov/animal-veterinary/aquaculture/approved-aquaculture-drugs. Accessed 30 Nov 2021

  • Urso R, Blardi P et al (2002) A short introduction to pharmacokinetics. Eur Rev Med Pharmacol Sci 6:33–44

    CAS  PubMed  Google Scholar 

  • Yang YH, Yang JN, Shang DR, Li FL, Wang LZ, Li FG, Li Y, Sun YH, He SH, Wu JX (2018) Tissue distribution and elimination features of florfenicol in hybrid sturgeon cultured in cool water. J Vet Pharmacol Ther 41(6):894–901

    Article  CAS  PubMed  Google Scholar 

  • Young BC, Alfaggeh RH (2021) Entirely farm-raised Snubnose pompano (Trachinotus blochii) under high salinity in Saudi Arabia. Isr J Aquac. https://doi.org/10.46989/001c.31013

    Article  Google Scholar 

  • Zhang DF, Li AH, Xie J, Ji C (2010) In vitro antibacterial effect of berberine hydrochloride and enrofloxacin to fish pathogenic bacteria. Aquaculture Res 41:1095–1100

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. A. Gopalakrishnan, Director, ICAR-CMFRI, for the facilities provided. The study formed part of the All India Network Project on Fish Health (AINP-FH). Authors thank the Indian Council of Agriculture Research (ICAR) for the funding. SG and VP acknowledge the fellowship granted to them by the ICAR through AINP-FH.

Funding

The funding for this research was provided by the Indian Council of Agricultural Research (ICAR) under the All India Network Project on Fish Health (Grant No. CIBA/AINP-FH/2015–16).

Author information

Authors and Affiliations

Authors

Contributions

KSSR conceptualized the presented idea, supervised the project, helped in drafting the manuscript, and acquired financial support for the project leading to this publication. STG analyzed the results and wrote the manuscript. VP, SG, AA, and RR conducted the experiments, sampling, and sample processing. GS, APG, PSK, and AMK provided technical support to carry out the experiments. PKP provided critical feedback while drafting the manuscript.

Corresponding author

Correspondence to S. R. Krupesha Sharma.

Ethics declarations

Ethics approval

All the live fish experiments were conducted in compliance with ARRIVE guidelines (Percie du Sert et al. 2020). The live fish were handled as per the guidelines of the UK Animals (Scientific Procedures) Act (1986) and EU Directive 2010/63/EU for animal experiments (2019). The experimental procedures followed in the present study were approved by the ICAR-CMFRI, Kochi, India (CIBA/AINP-FH/2020–21).

Consent to participate

Not applicable.

Consent for publication

The manuscript has been read and approved for publication by all listed authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumithra, T.G., Sharma, S.R.K., Prasad, V. et al. Pharmacokinetics and tissue distribution of florfenicol and florfenicol amine in snubnose pompano (Trachinotus blochii) following oral administration. Fish Physiol Biochem 49, 307–320 (2023). https://doi.org/10.1007/s10695-023-01179-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-023-01179-4

Keywords

Navigation