Skip to main content
Log in

Dietary supplementation of two indigenous Bacillus spp on the intestinal morphology, intestinal immune barrier and intestinal microbial diversity of Rhynchocypris lagowskii

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This study evaluated the effects of dietary administration of two indigenous Bacillus (A: basal control diet; B: 0.15 g/kg of Bacillus subtilis; C: 0.1 g/kg of Bacillus subtilis and 0.05 g/kg of Bacillus licheniformis; D: 0.05 g/kg of Bacillus subtilis and 0.1 g/kg of Bacillus licheniformis; E: 0.15 g/kg of Bacillus licheniformis) on the digestive enzyme activities, intestinal morphology, intestinal immune and barrier-related genes relative expression levels, and intestinal flora of Rhynchocypris lagowskii. The results showed that the fold height, lamina propria width, and muscle layer thickness of midgut and hindgut in group C were significantly higher than that of group A (P < 0.05). The activities of protease, amylase, and lipase in group C were significantly higher than those of group A (P < 0.05). The relative expression levels of IL-1β and IL-8 in the intestine of group C were significantly downregulated, and the relative expression levels of IL-10 and TGF-β were significantly upregulated (P < 0.05). The relative expression levels of Claudin-2 in group A significantly increased and the relative expression levels of Claudin-4 in group A significantly reduced compared with other groups (P < 0.05). The relative expression levels of ZO-1 in groups C and D were significantly higher than those of other groups (P < 0.05). The Bacillus in the intestine of group C has the highest relative abundance among all groups. Overall, it can generally be concluded that dietary supplementation of indigenous Bacillus subtilis and Bacillus licheniformis (group C) can improve the intestinal morphology, digestion, and absorption enzyme activities, enhance intestinal mucosal immunity and barrier function, and maintain the intestinal microbial balance of R. lagowskii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  • Abhinanda B, Ghosh KS, Sen SK et al (2002) Enzyme producing bacterial flora isolated from fish digestive tracts. Aquacult Int 10(2):109–121

    Article  Google Scholar 

  • Almansa E, Sanchez J, Cozzi S et al (2001) Segmental heterogeneity in the biochemical properties of the Na+-K+-ATPase along the intestine of the gilthead seabream (Sparus aurata L.). J Comp Physiol B Biochem Syst Environ Physiol 171(7):557

    Article  CAS  Google Scholar 

  • Aono S, Hirai Y (2008) Phosphorylation of claudin-4 is required for tight junction formation in a human keratinocyte cell line. Exp Cell Res 314(18):3326–3339

    Article  CAS  PubMed  Google Scholar 

  • Asaduzzaman M, Sofia E, Shakil A et al (2018) Host gut-derived probiotic bacteria promote hypertrophic muscle progression and upregulate growth-related gene expression of slow-growing Malaysian Mahseer Tor tambroides. Aquac Rep 9:37–45.

  • Balcázar JL, De BI et al (2006) The role of probiotics in aquaculture. Vet Microbiol 114(3–4):173–186

    Article  PubMed  Google Scholar 

  • Belizário JE, Mauro N (2015) Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Front Microbiol 6:1050

    Article  PubMed  PubMed Central  Google Scholar 

  • Chauhan A, Singh R (2018) Probiotics in aquaculture: a promising emerging alternative approach. Symbiosis 77(23):99–113

    Google Scholar 

  • Chen J, Zhou XQ, Lin F et al (2009) Effects of glutamine on hydrogen peroxide-induced oxidative damage in intestinal epithelial cells of Jian carp (Cyprinus carpio var. Jian). Aquaculture 288(3–4):285–289

    Article  CAS  Google Scholar 

  • Cheng N, Shi HY, Chen J (2014) Cloning of Ayu TGF-β1 gene and its correlation with Listonella anguilla infection. Biol J 31(04):1–5+28

    Google Scholar 

  • Chin D, Boyle GM, Parsons PG et al (2004) What is transforming growth factor-beta (TGF-beta)? Br J Plast Surg 57(3):215–221

    Article  PubMed  Google Scholar 

  • Cottrell MT, Kirchman DL (2000) Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matte. Appl Environ Microbiol 66(4):1692–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels CL, Merrifield DL, Boothroyd DP et al (2010) Effect of dietary Bacillus spp. and mannan oligosaccharides (MOS) on European lobster (Homarus gammarus L.) larvae growth performance, gut morphology and gut microbiota. Aquaculture 304(1–4):49–57

    Article  CAS  Google Scholar 

  • Darafsh F, Soltani M, Abdolhay HA et al (2020) Improvement of growth performance, digestive enzymes and body composition of Persian sturgeon ( Acipenser persicus ) following feeding on probiotics: Bacillus licheniformis, Bacillus subtilis and Saccharomyces cerevisiae. Aquac Res 51(3):957–964

    Article  CAS  Google Scholar 

  • Den Besten G, Lange K, Havinga R et al (2013) Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol Gastrointest Liver Physiol 305(12):G900-910

    Article  Google Scholar 

  • Eichmiller JJ, Hamilton MJ et al (2016) Environment shapes the fecal microbiome of invasive carp species. Microbiome 4(1):44

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan Y, Pedersen O (2020) Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 19:55–71

    Article  PubMed  Google Scholar 

  • Feng J, Cai Z, Chen Y et al (2020) Effects of an exopolysaccharide from Lactococcus lactis Z-2 on innate immune response, antioxidant activity, and disease resistance against Aeromonas hydrophila in Cyprinus carpio L. Fish Shellfish Immunol 98:324–333

    Article  CAS  PubMed  Google Scholar 

  • Finegold SM, Vaisanen ML, Molitoris DR et al (2003) Cetobacterium somerae sp. nov. from Human Feces and Emended Description of the Genus Cetobacterium. Syst Appl Microbiol 26(2):177–181

    Article  PubMed  Google Scholar 

  • Friedrich M, Pohin M, Powrie F (2019) Cytokine networks in the pathophysiology of inflammatory bowel disease. Immunity 50(4):992–1006

    Article  CAS  PubMed  Google Scholar 

  • Frøkjær JV, Jakob N, Hammerum AM et al (2004) Does the use of antibiotics in food animals pose a risk to human health? An unbiased review? J Antimicrob Chemother 54(1):274–275

    Article  Google Scholar 

  • Ge HY, Wang LM, Zhen YH et al (2011) Effects of raffinose on growth, immune resistance to stress and resistance to Aeromonas hydrophila challenge of Seabass. Acta Hydrobiol Sin 35(02):283–290

    Article  CAS  Google Scholar 

  • Gobi N, Vaseeharan B, Chen JC et al (2018) Dietary supplementation of probiotic Bacillus licheniformis Dahb1 improves growth performance, mucus and serum immune parameters, antioxidant enzyme activity as well as resistance against Aeromonas hydrophila in tilapia Oreochromis mossambicus. Fish Shellfish Immunol 74:501–508

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Liang MQ, Xu HG et al (2018) Effects of Gracilaria, Enteromorpha, algae residue and bacterial residue instead of fish meal on growth performance, serum and liver biochemical indicators, body composition and intestinal tissue structure of turbot juveniles. J Anim Nutr 1:299–312

    Google Scholar 

  • Han SF, Liu YC, Zhou ZG et al (2010) Analysis of bacterial diversity in the intestine of grass carp (Ctenopharyngodon idellus) based on 16S rDNA gene sequences. Aquac Res 42(1):47–56

    Article  CAS  Google Scholar 

  • Han L, Guo X, Gooneratne R et al (2016) The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci Rep 6:24340

    Article  Google Scholar 

  • Huang Q, Lin H, Wang R et al (2019) Effect of dietary vitamin B6 supplementation on growth and intestinal microflora of juvenile golden pompano (Trachinotus ovatus). Aquac Res 50(12):2359–2370

    Article  CAS  Google Scholar 

  • Hui M, Dou LN, Tian Q et al (2008) Research progress on the application of Bacillus subtilis. Anhui Agric Sci 36(27):3

    Google Scholar 

  • Jx A, Ks A, Yi HB et al (2020) Effects of dietary Bacillus cereus, B. subtilis, Paracoccus marcusii, and Lactobacillus plantarum supplementation on the growth, immune response, antioxidant capacity, and intestinal health of juvenile grass carp (Ctenopharyngodon idellus). Aquac Rep 17:100378

    Google Scholar 

  • Koushik G, Sen SK, Ray AK (2002) Characterization of bacilli isolated from the gut of Rohu, Labeo rohita, fingerlings and its significance in digestion. J Appl Aquac 12(3):33–42

    Article  Google Scholar 

  • Kuebutornye F, Abarike ED, Lu Y (2019) A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol 87:820–828

    Article  CAS  PubMed  Google Scholar 

  • Li SY, Wang QS (2020) Effects of chronic hypoperfusion on the expression of Occludin and Claudin-2 in the ileal mucosa of rats. Chin Tissue Eng Res 32:108–113

    Google Scholar 

  • Li T, Long M, Gatesoupe FJ et al (2015) Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing. Microb Ecol 69(1):25–36

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Wen L, Yang L et al (2015) Dietary phenylalanine-improved intestinal barrier health in young grass carp (Ctenopharyngodon idella) is associated with increased immune status and regulated gene expression of cytokines, tight junction proteins, antioxidant enzymes and related signalling molecules. Fish Shellfish Immunol 45(2):495–509

    Article  Google Scholar 

  • Liu B, Liu WB, Wang T (2005) Effects of Bacillus licheniformis on digestive performance and growth of Allogynogenetic crucian. J Nanjing Agric Univ 28(4):80–84

    CAS  Google Scholar 

  • Liu HT, Wang SF, Cai Y et al (2016) Dietary administration of Bacillus subtilis HAINUP40 enhances growth, digestive enzyme activities, innate immune responses and disease resistance of tilapia, Oreochromis Niloticus. Fish Shellfish Immunol 60:326–333

    Article  PubMed  Google Scholar 

  • Liu HJ, Yang HM, Xu L, Zhang LR et al (2018) The main points and key techniques of H.E. dyeing paraffin sections of livestock and poultry intestinal tissues. Heilongjiang Anim Husb Vet Med 15:206–210

    Google Scholar 

  • Luettig J, Rosenthal R, Barmeyer C et al (2015) Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation. Tissue Barriers 3(1–2):e977176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyons PP, Turnbull JF, Dawson KA et al (2017) Exploring the microbial diversity of the distal intestinal lumen and mucosa of farmed rainbow trout Oncorhynchus mykiss (Walbaum) using next generation sequencing (NGS). Aquac Res 48(1):77–91

    Article  CAS  Google Scholar 

  • Mi HF, Sun RJ, Zhang L et al (2015) Research progress on fish intestinal health. China Feed 15:4

    Google Scholar 

  • Michelle JP, David MS, David JA (2006) Comparison of conventional and molecular techniques to investigate the intestinal microflora of rainbow trout (Oncorhynchus mykiss). Aquaculture 261(1):194–203

    Article  Google Scholar 

  • Ming OL, Flavell RA (2008) TGFβ - A master of all T cell trades. Cell 134(3):392–404

    Article  Google Scholar 

  • Mirghaed AT, Yarahmadi P, Hosseinifar SH et al (2018) The effects singular or combined administration of fermentable fiber and probiotic on mucosal immune parameters, digestive enzyme activity, gut microbiota and growth performance of Caspian white fish (Rutilus frisii kutum) fingerlings. Fish Shellfish Immunol 77:194–199

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra S, Chakraborty T, Prusty AK (2012) Use of different microbial probiotics in the diet of rohu, Labeo rohita fingerlings: effects on growth, nutrient digestibility and retention, digestive enzyme activities and intestinal microflora. Aquac Nutr 18(1):1–11

    Article  CAS  Google Scholar 

  • Navin S, Champion S, Martin J-C et al (2019) Resveratrol-mediated glycemic regulation is blunted by curcumin and is associated to modulation of gut microbiota. J Nutr Biochem 72:108218

    Article  Google Scholar 

  • Ni JJ, Yu YH, Zhang TL et al (2012) Comparison of intestinal bacterial communities in grass carp, Ctenopharyngodon idellus, from two different habitats. Chin J Oceanol Limnol 30(5):757–765

    Article  Google Scholar 

  • Nighot PK, Hu C, Ma TY. (2015) Autophagy enhances intestinal epithelial tight junction barrier function by targeting claudin-2 protein degradation. J Biol Chem 290(11):7234–7246.

  • Qin L, Xiang J, Xiong F et al (2019) Effects of Bacillus licheniformis on the growth, antioxidant capacity, intestinal barrier and disease resistance of grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 97:344–350

  • Rodgers CJ (1995) Bacterial fish pathogens, disease in farmed and wild fish, 2nd ed.. Aquaculture, 133(3-4):347–349.

  • Rosenthal R, Günzel D, Theune D et al (2017a) Water channels and barriers formed by claudins. Ann N Y Acad Sci 1397(1):100–109

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal R, Günzel D, Krug SM et al (2017b) Claudin-2-mediated cation and water transport share a common pore. Acta Physiol 291(2):521–536

    Article  Google Scholar 

  • Schikorski D, Renault T, Paillard C et al (2013) Development of TaqMan real-time PCR assays for monitoring Vibrio harveyi infection and a plasmid harbored by virulent strains in European abalone Haliotis tuberculata aquaculture. Aquaculture 392–395:106–112

    Article  Google Scholar 

  • Secombes CJ, Wang T, Hong S et al (2001) Cytokines and innate immunity of fish. Dev Comp Immunol 25(8–9):713–723

    Article  CAS  PubMed  Google Scholar 

  • Shin NR, Whon TW, Bae JW (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33(9):496–503

    Article  CAS  PubMed  Google Scholar 

  • Standen BT, Rawling MD, Davies SJ et al (2013) Probiotic Pediococcus acidilactici modulates both localised intestinal- and peripheral-immunity in tilapia (Oreochromis niloticus). Fish Shellfish Immunol 35(4):1097–1104

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Han L, Chen XX, Xie MQ et al (2019) Dietary supplementation of probiotic Bacillus subtilis affects antioxidant defenses and immune response in grass carp under Aeromonas hydrophila Challenge. Probiotics Antimicrob Proteins 11(2):545–558

    Article  CAS  PubMed  Google Scholar 

  • Tascilar N, Irkorucu O, Tascilar O (2010) Bacterial translocation in experimental stroke: what happens to the gut barrier? Bratisl Lek Listy 111(4):194–199

    PubMed  Google Scholar 

  • Valiallahi J, Pourabasali M, Janalizadeh E et al (2018) Use of Lactobacillus for improved growth, and enhanced biochemical, hematological and digestive enzyme activity in fishes, (Cyprinus carpio L.), at Mazandaran Iran. N Am J Aquac 80(2):206–215

    Article  Google Scholar 

  • Ventura M, Canchaya C, Tauch A et al (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71(3):495–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P et al (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64(4):655–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wageha A, Claudia H, Michael H (2017) Enteric pathogens and their toxin-induced disruption of the intestinal barrier through alteration of tight junctions in chickens. Toxins 9(2):60

    Article  Google Scholar 

  • Wang Y, Mumm JB, Herbst R et al (2017) IL-22 increases permeability of intestinal epithelial tight junctions by enhancing Claudin-2 expression. J Immunol 199(9):3316–3325

    Article  CAS  PubMed  Google Scholar 

  • Wen RS, Zheng QM, Liu XL, Guo JS et al (2007) Effect of compound microbial preparation on growth and digestive enzyme activity of grass carp. Anhui Agric Sci 13:3880–3881

    Google Scholar 

  • Wu ZC (2020) Screening of intestinal enzyme-producing probiotics from Rockwellia and analysis of their adhesion characteristics. Jilin Agric Univ. https://doi.org/10.27163/d.cnki.gjlnu.2020.000294

    Article  Google Scholar 

  • Wu S, Wang G, Angert ER et al (2012) Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS ONE 7(2):e30440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang RL, Su YC, Pei XQ et al (2012) Research progress of tight junction protein claudin-4. Adv Physiol Sci 43(4):310–314

    CAS  Google Scholar 

  • Xu FL, Li ZG, Fu P et al (2011) The latest development of the physiological effects of probiotics. J Hyg Res 40(02):277–278

    Google Scholar 

  • Xu QY, Wang JG, Wang LS et al (2017) Effects of Bacillus megaterium on digestive enzyme activity and intestinal morphology of hybrid sturgeon. J Northeast Agric Univ 048(005):50–57

    CAS  Google Scholar 

  • Yan F, Ji JJ (2007) Application status of microorganism feed additive in china. Feed Industry 028(006):8–10

    Google Scholar 

  • Ye L, Amberg J, Chapman D et al (2014) Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. ISME J 8(3):541

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Gao QP, Xie J et al (2012) Comparative study on growth and intestinal microflora of Jian Carp supplemented with three kinds of Bacillus. J Feed Industry 33(18):16–19

    Google Scholar 

  • Yu T, Wang Q, Chen X et al (2020) Effect of dietary Lヽarnitine supplementation on growth performance and lipid metabolism in Rhynchocypris lagowski Dybowski fed oxidized fish oil. Aquac Res 51(9):3698–3710

    Article  CAS  Google Scholar 

  • Zeraati M, Enayati M, Kafami L et al (2019) Gut microbiota depletion from early adolescence alters adult immunological and neurobehavioral responses in a mouse model of multiple sclerosis. Neuropharmacology 157:107685

    Article  CAS  PubMed  Google Scholar 

  • Zhang J (2000) The application of probiotics in aquaculture (1). Landland Fish (08):22

  • Zhao L, Tang G, Xiong C et al (2021) Chronic chlorpyrifos exposure induces oxidative stress, apoptosis and immune dysfunction in largemouth bass (Micropterus salmoides). Environ Pollut 282:117010

    Article  CAS  PubMed  Google Scholar 

  • Zhou YH, Zeng ZH, Xu YB et al (2020) Application of Bacillus coagulans in animal husbandry and its underlying mechanisms. Animals 10(3):454

    Article  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Key Scientific and Technological Research and Development Program of Jilin Province (No. 20180201017NY), Jilin Province Education Department Science and Technology Project (JJKH20210370KJ).

Author information

Authors and Affiliations

Authors

Contributions

• Xin-yu Lei: Methodology, Investigation, Validation, Formal analysis, Writing-Original Draft.

• Dong-ming Zhang: Supervision, Resources. Conceptualization, Project administration, Funding acquisition.

• Qiu-Ju Wang: Supervision, Resources.

• Gui-qin Wang: Supervision, Resources.

• Yue-hong Li: Supervision, Resources.

• Yu-Rou Zhang: Validation.

• Meng-Nan Yu: Validation.

• Qi-Yao: Validation.

• Zhi-xin Guo: Conceptualization, Project administration, Funding acquisition.

• Yu-ke Chen: Conceptualization, Supervision, Resources, Project admi, Formal analysis, Writing-Original Draft.

Corresponding authors

Correspondence to Yu-ke Chen or Zhi-xin Guo.

Ethics declarations

Ethics approval

The experiment was carried out in accordance with the research plan of the Institutional Animal Care and Use Committee of Jilin Agricultural University.

Consent to participate

All authors agree to participate in this study.

Consent for publication

All authors agree to participate in the publication of this article.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Xy., Zhang, Dm., Wang, Qj. et al. Dietary supplementation of two indigenous Bacillus spp on the intestinal morphology, intestinal immune barrier and intestinal microbial diversity of Rhynchocypris lagowskii. Fish Physiol Biochem 48, 1315–1332 (2022). https://doi.org/10.1007/s10695-022-01121-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-022-01121-0

Keywords

Navigation