Skip to main content
Log in

Molecular cloning, characterization and expression analysis of P53 from high latitude fish Phoxinus lagowskii and its response to hypoxia

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

As an intermediate link between multiple cellular stresses and cellular responses, p53, together with its upstream and downstream regulators and related genes, constitutes a complex network that regulates cellular stresses and cellular responses. However, no studies have investigated p53 in Phoxinus lagowskii, particularly the expression of p53 under different hypoxic conditions. In the present study, the cDNA of p53 from the Phoxinus lagowskii was cloned by the combination of homology cloning and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of Pl-p53 was 1878 bp, including an open reading frame (ORF) of 1116 bp encoding a polypeptide of 371 amino acids with a predicted molecular weight of 41.22 kDa and a theoretical isoelectric point of 7.38. Quantitative real-time (qRT) PCR assays revealed that Pl-p53 was commonly expressed in all tissues examined, with highest expression in the heart. In addition, we investigated the expression of Pl-p53 in different tissues under different hypoxic conditions. In the short-term hypoxia group, Pl-p53 expression was down-regulated in both the brain and heart. The Pl-p53 expression was significantly elevated at 6 h in the muscle and liver, and was significantly up-regulated at 24 h in spleen. These results suggest that Pl-p53 plays different regulatory roles and provide a theoretical basis for the changes of p53 in fish facing hypoxic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All datasets generated for this study are included in the article.

Code availability

Not applicable.

References

  • Amelio I, Melino G (2015) The p53 family and the hypoxia-inducible factors (HIFs): determinants of cancer progression. Trends Biochem Sci 40:425–434

    Article  CAS  PubMed  Google Scholar 

  • Ampofo E, Kietzmann T, Zimmer A, Zimmer A, Jakupovic M, Montenarh M, Gotz C (2010) Phosphorylation of the von Hippel-Lindau protein (VHL) by protein kinase CK2 reduces its protein stability and affects p53 and HIF-1α mediated transcription. Int J Biochem Cell Biol 42:1729–1735

    Article  CAS  PubMed  Google Scholar 

  • Beyfuss K, Hood DA (2018) A systematic review of p53 regulation of oxidative stress in skeletal muscle. Redox Rep 23:100–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitburg D, Levin LA, Oschlies A, Gregoire M, Chavez F P, Conley DJ, Garcon V, Gilbert D, Gutierrez D, Isensee K, Jacinto GS, Limburg KE, Montes I, Naqvi SWA, Pitcher GC., Rabalais NN, Roman MR, Rose KA, Seibel BA, Telszewski M, Yasuhara M, Zhang J (2018) Declining oxygen in the global ocean and coastal waters. Science 359:eaam7240

  • Cachot J, Galgani F, Vincent F (1998) cDNA cloning and expression analysis of flounder p53 tumour suppressor gene. Comp Biochem Physiol b: Biochem Mol Biol 121:235–242

    Article  CAS  Google Scholar 

  • Castro JS, Braz-Mota S, Campos DF, Souza SS, Val AL (2020) High temperature, ph, and hypoxia cause oxidative stress and impair the spermatic performance of the Amazon fish Colossoma macropomum. Front Physiol 11:772

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng CH, Luo SW, Ye CX (2016) Identification, characterization and expression analysis of tumor suppressor protein p53 from pufferfish (Takifugu obscurus) after the Vibrio alginolyticus challenge. Fish Shellfish Immunol 59:312–322

    Article  CAS  PubMed  Google Scholar 

  • Cheng R, Ford BL, O’Neal PE (1997) Zebrafish (Danio rerio) p53 tumor suppressor gene: cDNA sequence and expression during embryogenesis. Mol Mar Biol Biotech 6:88–97

    CAS  Google Scholar 

  • Comte L, Olden JD (2017) Evolutionary and environmental determinants of freshwater fish thermal tolerance and plasticity. Glob Change Biol 23:728–736

    Article  Google Scholar 

  • Chen D, Li M, Luo J (2003) Direct interactions between HIF-1α and Mdm2 modulate p53 function. J Biol Chem 278:13595–13598

    Article  CAS  PubMed  Google Scholar 

  • Dai W, Qiu L, Zhao C, Fu M, Ma Z, Zhou F, Yang Q (2016) Characterization, expression and silencing by RNAi of p53 from Penaeus monodon. Mol Biol Rep 43:549–561

    Article  CAS  PubMed  Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929

    Article  CAS  PubMed  Google Scholar 

  • Domenici P, Herbert NA, Lefrançois C, Steffensen JF, McKenzie DJ, 2013a. The effect of hypoxia on fish swimming performance and behaviour, Swimming Physiology of Fish 129–159

  • Domenici P, Herbert NA, Lefrançois C (2013b) The effect of hypoxia on fish swimming performance and behaviour. Swimming Physiology of Fish, Springer Berlin Heidelberg, pp 129–159

  • Farcy E, Fleury C, Lelong C (2008) Molecular cloning of a new member of the p53 family from the Pacific oyster Crassostrea gigas and seasonal pattern of its transcriptional expression level. Mar Environ Res 66:300–308

    Article  CAS  PubMed  Google Scholar 

  • Franco R, Sánchez-Olea R, Reyes-Reyes EM (2009) Environmental toxicity, oxidative stress and apoptosis: menage a trois. Mutat Res/genet Toxicol Environ Mutagen 674:3–22

    Article  CAS  Google Scholar 

  • de Fromentel C C, Pakdel F, Chapus A, Baney C, May P, Soussi T (1992) Rainbow trout p53: cDNA cloning and biochemical characterization. Gene 112:241-245

    Article  Google Scholar 

  • Ganguli G, Back J, Sengupta S (2002) The p53 tumour suppressor inhibits glucocorticoid-induced proliferation of erythroid progenitors. EMBO Rep 3:569–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert D, Sundby B, Gobeil C (2005) A seventy-two-year record of diminishing deep-water oxygen in the St. Lawrence estuary: the northwest Atlantic connection. Limnol Oceanogr 50:1654–1666

    Article  CAS  Google Scholar 

  • Guo H, Fu X, Li N (2016) Molecular characterization and expression pattern of tumor suppressor protein p53 in mandarin fish, Siniperca chuatsi following virus challenge. Fish & Shellfish Immunol 51:392–400

    Article  CAS  Google Scholar 

  • Guo H, Fu X, Lin Q (2017) Mandarin fish p53: genomic structure, alternatively spliced variant and its mRNA expression after virus challenge. Fish Shellfish Immunol 70:536–544

    Article  CAS  PubMed  Google Scholar 

  • He Z, Deng F, Ma Z (2021) Molecular characterization, expression, and H2O2 induction of p53 and mdm2 in the ricefield eel, Monopterus albus. Aquac Rep 20:100675

    Article  Google Scholar 

  • Huang Q, Xie D, Mao H (2017) Ctenopharyngodon idella p53 mediates between NF-kB and PKR at the transcriptional level. Fish Shellfish Immunol 69:258–264

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Liu X, Ma A (2020) Molecular cloning, characterization and expression analysis of p53 from turbot Scophthalmus maximus and its response to thermal stress. J Therm Biol 90:102560

    Article  CAS  PubMed  Google Scholar 

  • Irwin MS, Kaelin WG (2001) p53 family update: p73 and p63 develop their own identities. Cell Growth Differ 12:337–349

    CAS  PubMed  Google Scholar 

  • Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias J-M, Dumont X, Ferrara P, McKeon F, Caput D (1997) Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90:809–819

    Article  CAS  PubMed  Google Scholar 

  • Kemp PS, Tsuzaki T, Moser ML (2009) Linking behaviour and performance: intermittent locomotion in a climbing fish. J Zool 277:171–178

    Article  Google Scholar 

  • Koumenis C, Alarcon R, Hammond E (2001) Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol 21:1297–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause MK, Rhodes LD, Van Beneden RJ (1997) Cloning of the p53 tumor suppressor gene from the Japanese medaka (Oryzias latipes) and evaluation of mutational hotspots in MNNG-exposed fish. Gene 189:101–106

    Article  CAS  PubMed  Google Scholar 

  • Lane DP, Madhumalar A, Lee AP (2011) Conservation of all three p53 family members and Mdm2 and Mdm4 in the cartilaginous fish. Cell Cycle 10:4272–4279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YM, Rhee JS, Hwang DS (2008) p53 gene expression is modulated by endocrine disrupting chemicals in the hermaphroditic fish, Kryptolebias marmoratus. Comp Biochem Physiol C Toxicol Pharmacol 147:150–157

    Article  PubMed  CAS  Google Scholar 

  • Le Goas F, May P, Ronco P (1997) cDNA cloning and immunological characterization of rabbit p53. Gene 187:169–173

    Article  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ, Finlay CA, Hinds PW (2004) P53 is a tumor suppressor gene. Cell 116:67–69

    Article  Google Scholar 

  • Li XL, Shi HM, Xia HY, Zhou YP, Qiu YW (2014) Seasonal hypoxia and its potential forming mechanisms in the Mirs Bay, the northern South China Sea. Cont Shelf Res 80:1–7

    Article  Google Scholar 

  • Liu M, Tee C, Zeng F, Sherry JP, Dixon B, Bols NC, Duncker BP (2011) Characterization of p53 expression in rainbow trout. Comp Biochem Physiol C Toxicol Pharmacol 154:326–332

    Article  CAS  PubMed  Google Scholar 

  • Lushchak VI, Bagnyukova TV (2006) Effects of different environmental oxygen levels on free radical processes in fish. Comp Biochem Physiol B Biochem Mol Biol 144:283–289

    Article  PubMed  CAS  Google Scholar 

  • Mai WJ, Yan JL, Wang L, Zheng Y, Xin Y, Wang WN (2010) Acute acidic exposure induces p53-mediated oxidative stress and DNA damage in tilapia (Oreochromis niloticus) blood cells. Aquat Toxicol 100:271–281

    Article  CAS  PubMed  Google Scholar 

  • Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15

    Article  CAS  PubMed  Google Scholar 

  • Matlashewski G, Lamb P, Pim D (1984) Isolation and characterization of a human p53 cDNA clone. EMBO J 3:3257–3262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meira LB, Bugni JM, Green SL, Lee CW, Pang B, Borenshtein D, Rickman BH, Rogers AB, Moroski-Erkul CA, McFaline JL, Schauer DB, Dedon PC, Fox JG, Samson LD (2008) DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Investig 118:2516–2525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mustafa SA, Karieb SS, Davies SJ, Jha AN (2015) Assessment of oxidative damage to DNA, transcriptional expression of key genes, lipid peroxidation and histopathological changes in carp Cyprinus carpio L. following exposure to chronic hypoxic and subsequent recovery in normoxic conditions. Mutagenesis 30:107–116

    Article  CAS  PubMed  Google Scholar 

  • Naito AT, Okada S, Minamino T, Iwanaga K, Liu ML, Sumida T, Nomura S, Sahara N, Mizoroki T, Takashima A, Akazawa H, Nagai T, Shiojima I, Komuro I (2010) Promotion of CHIP-mediated p53 degradation protects the heart from ischemic injury. Circ Res 106:1692–1702

    Article  CAS  PubMed  Google Scholar 

  • Nakano T, Kameda M, Shoji Y, Hayashi S, Yamaguchi T, Sato M (2014) Effect of severe environmental thermal stress on redox state in salmon. Redox Biol 2:772–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikinmaa M, Rees BB (2005) Oxygen-dependent gene expression in fishes. Am J Physiol Regul Integr Comp Physiol 288:R1079-1090

    Article  CAS  PubMed  Google Scholar 

  • Qi ZH, Liu YF, Luo SW, Chen CX, Liu Y, Wang WN (2013) Molecular cloning, characterization and expression analysis of tumor suppressor protein p53 from orange-spotted grouper, Epinephelus coioides in response to temperature stress. Fish & Shellfish Immunol 35:1466–1476

    Article  CAS  Google Scholar 

  • Richards JG (2009) Metabolic and molecular responses of fish to hypoxia. Fish Physiol 27:443–485

  • Robinson C (2019) Microbial respiration, the engine of ocean deoxygenation. Front Mar Sci 5:533

    Article  Google Scholar 

  • Shen RJ, Jiang XY, Pu JW, Zou SM (2010) HIF-1α and -2α genes in a hypoxia-sensitive teleost species Megalobrama amblycephala: cDNA cloning, expression and different responses to hypoxia. Comp Biochem Physiol B Biochem Mol Biol 157:273–280

    Article  PubMed  CAS  Google Scholar 

  • Stefanatos R, Sanz A (2018) The role of mitochondrial ROS in the aging brain. FEBS Lett 592:743–758

    Article  CAS  PubMed  Google Scholar 

  • Terova G, Rimoldi S, Corà S, Bernardini G, Gornati R, Saroglia M (2008) Acute and chronic hypoxia affects HIF-1α mRNA levels in sea bass (Dicentrarchus labrax). Aquaculture 279:150–159

    Article  CAS  Google Scholar 

  • Wang Q, Li X, Sha H, Luo X, Zou G, Liang H (2021) Identification of microRNAs in silver carp (Hypophthalmichthys molitrix) response to hypoxia stress. Animals 11:2917

    Article  PubMed  PubMed Central  Google Scholar 

  • Wells RMG, Grigg GC, Beard LA, Summers G (1989) Hypoxic responses in a fish from a stable environment: blood oxygen transport in the antarctic fish Pagothenia borchgrevinki. J Exp Biol 141:97–111

    Article  Google Scholar 

  • Yang A, Kaghad M, Wang Y (1998) p63, a p53 Homolog at 3q27–29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2:305–316

    Article  CAS  PubMed  Google Scholar 

  • Yahagi N, Shimano H, Matsuzaka T, Sekiya M, Najima Y, Okazaki S, Okazaki H, Tamura Y, Iizuka Y, Inoue N, Nakagawa Y, Takeuchi Y, Ohashi K, Harada K, Gotoda T, Nagai R, Kadowaki T, Ishibashi S, Osuga J, Yamada N (2004) p53 involvement in the pathogenesis of fatty liver disease. J Biol Chem 279:20571–20575

    Article  CAS  PubMed  Google Scholar 

  • Yoo SY, Yoo JY, Kim HB, Baik TK, Lee JH, Woo RS (2019) Neuregulin-1 protects neuronal cells against damage due to CoCl2-induced hypoxia by suppressing hypoxia-inducible factor-1α and P53 in SH-SY5Y cells. Int Neurourol J 23:S111-118

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Cao X, Gao J (2019) Cloning of fatty acid-binding protein 2 (fabp2) in loach (Misgurnus anguillicaudatus) and its expression in response to dietary oxidized fish oil. Comp Biochem Physiol B Biochem Mol Biol 229:26–33

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Jiang X, Kong X, Di G, Nie G, Li X (2017) Effects of hypoxia on lysozyme activity and antioxidant defences in the kidney and spleen of Carassius auratus. Aquac Res 48:223–235

    Article  CAS  Google Scholar 

Download references

Funding

The research was supported by the National Natural Science Foundation of China (32170523), Harbin Normal University Graduate Innovation Project (HSDSSCX2021-08), Outstanding Youth Science Fund Project of Harbin Normal University and the funding of “Blue granary” scientific and technological innovation of China (2019YFD0900405), fundamental scientific research business expenses of colleges and universities in Heilongjiang Province (2021-KYYWF-0165).

Author information

Authors and Affiliations

Authors

Contributions

JW and WM designed the experiments, analyzed data and wrote the manuscript together. The samples were obtained, and the experiments were carried out by ZW, XC and XG.

Corresponding author

Correspondence to Weijie Mu.

Ethics declarations

Ethics approval

The authors followed all applicable international, national and/or institutional guidelines for animal care and use. However, this study was approved by the Ethics Committee of Harbin Normal University.

Consent to participate

All names in the author list have been involved in various stages of experimentation or writing.

Consent for publication

All authors agree to submit the paper for publication in the Journal of Fish Physiology and Biochemistry.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chen, X., Ge, X. et al. Molecular cloning, characterization and expression analysis of P53 from high latitude fish Phoxinus lagowskii and its response to hypoxia. Fish Physiol Biochem 48, 631–644 (2022). https://doi.org/10.1007/s10695-022-01072-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-022-01072-6

Keywords

Navigation