Skip to main content
Log in

Expression and characterization of rainbow trout Oncorhynchus mykiss recombinant myoglobin

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Recombinant expression system was established for rainbow trout myoglobin (Mb) considering its unique primary structure of having one unusual deletion and two cysteine residues in contrast to the other fish Mbs. The obtained recombinant Mb without His-tag showed non-cooperative thermal denaturation profile. The presence of free cysteine residue(s) in rainbow trout Mb was demonstrated by reacting with a sulfhydryl agent, 4, 4´-dithiodipyridine, which ultimately resulted in the oxidation of Mb with characteristic changes in visible absorption spectra. Besides, the recombinant Mb displayed steady peroxidase reactivity indicating in vivo roles of Mb as a reactive oxygen species scavenger. The findings of the present study indicate that the solitary rainbow trout Mb, which ultimately manifest typical secondary structure pattern and corroborate characteristic functionality, can be over expressed in recombinant system devoid of fusion tag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Antonini E, Brunori M (1971) Hemoglobin and myoglobin in their reactions with ligands. North Holland Publishing Company, Amsterdam

    Google Scholar 

  • Bianchi M, Clementi ME, Maras B, Schininà ME, Bozzi M, Giardina B, Brancaccio A (2003) Recombinant expression of Mus musculus myoglobin. Protein Expres Purif 29:265–271

    Article  CAS  Google Scholar 

  • Bickler PE, Buck LT (2007) Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu Rev Physiol 69:145–170

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum GI, Evans SV, Przybylska M, Rose DR (1994) 1.70 Å resolution structure of myoglobin from yellowfin tuna. An example of a myoglobin lacking the D helix. Acta Crystallogr D Biol Crystallogr 50:283–289

    Article  CAS  PubMed  Google Scholar 

  • Breslow E, Beychok S, Hardman KD, Gurd FRN (1965) Relative conformations of sperm whale myoglobin and apomyoglobin in solution. J Biol Chem 240:304–309

    Article  CAS  PubMed  Google Scholar 

  • Brunori M (2001) Nitric oxide moves myoglobin centre stage. Trends Biochem Sci 26:21–23

    Article  CAS  PubMed  Google Scholar 

  • Cashon RE, Vayda ME, Sidell BD (1997) Kinetic characterization of myoglobins from vertebrates with vastly different body temperatures. Comp Biochem Physiol B 117:613–620

    Article  CAS  PubMed  Google Scholar 

  • Carlsson MLR, Kanagarajan S, Bülow L, Zhu L-H (2020) Plant based production of myoglobin- a novel source of the muscle heme-protein. Sci Rep 10:920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutruzzola F, Allocatelli CT, Brancaccio A, Brunori M (1996) Aplysia limacina myoglobin cDNA cloning: an alternative mechanism of oxygen stabilization as studied by active-site mutagenesis. Biochem J 314:83–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodson G, Hubbard RE, Oldfield TJ, Smerdon SJ, Heslington UK (1988) Apomyoglobin as a molecular recognition surface: expression, reconstitution and crystallization of recombinant porcine myoglobin in Escherichia coli. Protein Eng 2:233–237

    Article  CAS  PubMed  Google Scholar 

  • Dou Y, Maillett DH, Eich RF, Olson JS (2002) Myoglobin as a model system for designing heme protein based blood substitutes. Biophys Chem 98:127–148

    Article  CAS  PubMed  Google Scholar 

  • Doyle MP, Hoekstra JW (1981) Oxidation of nitrogen-oxides by bound dioxygen in hemoproteins. J Inorg Biochem 14:351–358

    Article  CAS  PubMed  Google Scholar 

  • Edman P (1950) Method for determination of the amino acid sequence in peptides. Acta Chem Scand 4:283–293

    Article  CAS  Google Scholar 

  • Enoki Y, Ohga Y, Ishidate H, Morimoto T (2008) Primary structure of myoglobins from 31 species of birds. Comp Biochem Physiol B 149:11–21

    Article  PubMed  CAS  Google Scholar 

  • Ferreras JM, Ragucci S, Citores L, Iglesias R, Pedone PV, Maro AD (2016) Insight into the phylogenetic relationship and structural features of vertebrate myoglobin family. Int J Biol Macromol 93:1041–1050

    Article  CAS  PubMed  Google Scholar 

  • Flogel U, Godecke A, Klotz LO, Schrader J (2004) Role of myoglobin in the antioxidant defense of the heart. FASEB J 18:1156–1158

    Article  PubMed  CAS  Google Scholar 

  • Gardner LC, Smith SJ, Cox TM (1991) Biosynthesis of δ-aminolevulinic acid and the regulation of heme formation by immature erythroid cells in man. J Biol Chem 32:22010–22018

    Article  Google Scholar 

  • Goto Y, Fink AL (1994) Acid-induced folding of heme proteins. Method Enzymol 232:3–15

    Article  CAS  Google Scholar 

  • Grassetti DR, Murray JF (1967) Determination of sulfhydryl groups with 2,2´- or 4,4´- dithiodipyridine. Arch Biochem Biophys 119:41–49

    Article  CAS  PubMed  Google Scholar 

  • Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griko YV, Privalov PL, Venyaminov SY, Kutyshenko VP (1988) Thermodynamic study of the apomyoglobin structure. J Mol Biol 202:127–138

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. University Press, Oxford, England

    Google Scholar 

  • Hasan MM, Arafah P, Ozawa H, Ushio H, Ochiai Y (2021) Thermal denaturation and autoxidation profiles of carangid fish myoglobins. Fish Physiol Biochem 47:487–498

    Article  CAS  PubMed  Google Scholar 

  • Helbo S, Fago A (2011) Allosteric modulation by S-nitrosation in the low-O2 affinity myoglobin from rainbow trout. Am J Physiol Integr Comp Physiol 300:R101–R108

    Article  CAS  Google Scholar 

  • Helbo S, Dewilde S, Williams DR, Berghmans H, Berenbrink M, Cossins AR, Fago A (2012) Functional differentiation of myoglobin isoforms in hypoxia-tolerant carp indicates tissue-specific protective roles. Am J Physiol Integr Comp Physiol 302:R693–R701

    Article  CAS  Google Scholar 

  • Hendgen-Cotta UB, Merx MW, Shiva S, Schmitz J, Becher S, Klare JP, Steinhoff H-J, Goedecke A, Schrader J, Gladwin MT, Kelm M, Rassaf T (2008) Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci USA 105:10256–10261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingemansson T, Olsson NU, Herslöf B, Ekstrand B (1991) Lipids in light and dark muscle of farmed rainbow trout (Oncorhynchus mykiss). J Sci Food Agric 57:443–447

    Article  CAS  Google Scholar 

  • Jung Y, Kwak J, Lee Y (2001) High-level production of heme-containing holoproteins in Escherichia coli. Appl Microbiol Biotechnol 55:187–191

    Article  CAS  PubMed  Google Scholar 

  • Khan F, Legler PM, Mease RM, Duncan EH, Bergmann-Leitner ES, Angov E (2012) Histidine affinity tags affect MSP142 structural stability and immunodominance in mice. Biotechnol J 7:133–147

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Madden PW, Babcock MJ, Vayda ME, Cashon RE (2004) Structural and kinetic characterization of myoglobins from eurythermal and stenothermal fish species. Comp Biochem Physiol B 137:341–350

    Article  PubMed  CAS  Google Scholar 

  • Marcinek DJ, Bonaventura J, Wittenberg JB, Block BA (2001) Oxygen affinity and amino acid sequence of myoglobins from endothermic and ectothermic fish. Am J Physiol Regul Integr Comp Physiol 208:R1123–R1133

    Article  Google Scholar 

  • McKenzie DJ, Wong S, Randall DJ, Egginton S, Taylor EW, Farrell AP (2004) The effects of sustained exercise and hypoxia upon oxygen tensions in the red muscle of rainbow trout. J Exp Biol 207:3629–3637

    Article  CAS  PubMed  Google Scholar 

  • Nishii I, Kataoka M, Goto Y (1995) Thermodynamic stability of the molten globule states of apomyoglobin. J Mol Biol 250:223–238

    Article  CAS  PubMed  Google Scholar 

  • Nishimoto M, Clark JE, Masters BS (1993) Cytochrome P450 4A4: expression in Escherichia coli, purification, and characterization of catalytic properties. Biochemistry 32:8863–8870

    Article  CAS  PubMed  Google Scholar 

  • Ohgushi M, Wada A (1983) ‘Molten-globule state’: a compact form of globular proteins with mobile side-chains. FEBS Lett 164:21–24

    Article  CAS  PubMed  Google Scholar 

  • Olson JS, Mathews AJ, Rohlfs RJ, Springer BA, Egeberg KD, Sligar SG, Tame J, Renaud JP, Nagai K (1988) The role of distal histidine in myoglobin and haemoglobin. Nature 336:265–266

    Article  CAS  PubMed  Google Scholar 

  • Ptitsyn OB (1992) The molten globule state. In Protein folding ed Creighton TE. W.H. Freeman and Co. New York

  • Rayner BS, Wu BJ, Raftery M, Stocker R, Witting PK (2005) Human S-nitroso oxymyoglobin is a store of vasoactive nitric oxide. J Biol Chem 280:9985–9993

    Article  CAS  PubMed  Google Scholar 

  • Regis WCB, Fattori J, Santoro MM, Jamin M, Ramos CHI (2005) On the difference in stability between horse and sperm whale myoglobins. Arch Biochem Biophys 436:168–177

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro EA Jr, Regis WCB, Tasic L, Ramos CHI (2003) Fast purification of the apo form and of a non-binding heme mutant of recombinant sperm whale myoglobin. Protein Express Purif 28:202–208

    Article  CAS  Google Scholar 

  • Salem M, Rexroad CE III, Wang J, Thorgaard GH, Yao J (2010) Characterization of the rainbow trout transcriptome using Sanger and 454-pyrosequencing approaches. BMC Genomics 11:564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schein CH, Noteborn MHM (1988) Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Nat Biotechnol 6:291–294

    Article  CAS  Google Scholar 

  • Schreiter ER, Rodriguez MM, Weichsel A, Montfort WR, Bonaventura J (2007) S-nitrosylation-induced conformational change in blackfin tuna myoglobin. J Biol Chem 282:19773–19780

    Article  CAS  PubMed  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  • Springer BA, Sligar SG (1987) High-level expression of sperm whale myoglobin in Escherichia coli. Proc Natl Acad Sci USA 84:8961–8965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suman SP, Joseph P, Li S, Steinke L, Fontaine M (2009) Primary structure of goat myoglobin. Meat Sci 82:456–460

    Article  CAS  PubMed  Google Scholar 

  • Tada T, Watanabe Y, Matsuoka A, Ikeda-Saito M, Imai K, Ni-Hei Y, Shikama K (1998) African elephant myoglobin with an unusual autoxidation behavior: comparison with the H64Q mutant of sperm whale myoglobin. Biochim Biophys Acta 1387:165–176

    Article  CAS  PubMed  Google Scholar 

  • Ueki N, Ochiai Y (2005) Structural stabilities of recombinant scombridae fish myoglobins. Biosci Biotechnol Biochem 69:1935–1943

    Article  CAS  PubMed  Google Scholar 

  • Ueki N, Chow CJ, Ochiai Y (2005) Characterization of bullet tuna myoglobin with reference to the thermostabiity-structure relationship. J Agric Food Chem 53:4968–4975

    Article  CAS  PubMed  Google Scholar 

  • Ueki N, Ochiai Y (2006) Effect of amino acid replacements on the structural stability of fish myoglobin. J Biochem 140:649–656

    Article  CAS  PubMed  Google Scholar 

  • Varadarajan R, Szabo A, Boxer SG (1985) Cloning, expression in Escherichia coli, and reconstitution of human myoglobin. Proc Natl Acad Sci USA 82:5681–5684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varnado CL, Goodwin DC (2004) System for the expression of recombinant hemoproteins in Escherichia coli. Protein Expres Purif 35:76–83

    Article  CAS  Google Scholar 

  • Watts DA, Rice RH, Brown WD (1980) The primary structure of myoglobin from yellowfin tuna (Thunnus albacares). J Biol Chem 255:10916–10924

    Article  CAS  PubMed  Google Scholar 

  • Wiechelman KJ, Braun RD, Fitzpatrick JD (1988) Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Anal Biochem 175:231–237

    Article  CAS  PubMed  Google Scholar 

  • Wittenberg JB, Wittenberg BA (2003) Myoglobin function reassessed. J Exp Biol 206:2011–2020

    Article  CAS  PubMed  Google Scholar 

  • Witting PK, Mauk AG (2001) Reaction of human myoglobin and H2O2: electron transfer between tyrosine phenoxyl radical and cysteine in human myoglobin yields a protein-thiyl radical. J Biol Chem 276:16540–16547

    Article  CAS  PubMed  Google Scholar 

  • Woodard SI, Dailey HA (1995) Regulation of heme biosynthesis in Escherichia coli. Arch Biochem Biophys 316:110–115

    Article  CAS  PubMed  Google Scholar 

  • Woody RW (1995) Circular Dichroism Method Enzymol 246:34–71

    Article  CAS  Google Scholar 

Download references

Funding

This work was partly supported by the Japan Society for Promotion of Sciences (KAKENHI # 22380015 to Y. O.).

Author information

Authors and Affiliations

Authors

Contributions

All authors planned and designed the studies. Material preparation, data collection, and analyses were performed by MH. MH wrote the manuscript and all authors read and approved the submitted version.

Corresponding author

Correspondence to Muhammad Mehedi Hasan.

Ethics declarations

Ethics approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2.05 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, M.M., Ushio, H. & Ochiai, Y. Expression and characterization of rainbow trout Oncorhynchus mykiss recombinant myoglobin. Fish Physiol Biochem 47, 1477–1488 (2021). https://doi.org/10.1007/s10695-021-00991-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-021-00991-0

Keywords

Navigation