Skip to main content
Log in

Pseudobranch mimics gill in expressing Na+K+-ATPase 1 α-subunit and carbonic anhydrase in concert with H+-ATPase in adult hilsa (Tenualosa ilisha) during river migration

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In hilsa (Tenualosa ilisha), pseudobranch comprises a row of parallel filaments bear numerous leaf-like lamellae arranged on both sides throughout its length. The purpose of this study was to elucidate involvement of pseudobranchial Na+, K+-ATPase (NKA) 1 α-subunit, and carbonic anhydrase (CA) in concert with H+-ATPase (HAT) compared to their branchial counterparts in freshwater acclimation of hilsa during spawning migration from off-shore of the Bay of Bengal to the Bhagirathi-Hooghly zones of the Ganga river system in India. Adult hilsa fish were collected from seawater (SW), freshwater 1 (FW1), and freshwater 2 (FW2) locations, where the salinity level was 26–28‰, 1–5‰, and 0–0.04‰, respectively. Hilsa migrating through freshwater showed a consistent decrease in the plasma osmolality, sodium (Na+) and chloride (Cl) ion levels indicates unstable ionic homeostasis. The mRNA expression and activity of NKA 1 α-subunit in pseudobranch as well as in true gills declined with the migration to upstream locations. The pseudobranchial CA activity almost mirrors its branchial counterpart most notably while hilsa entered the freshwater zone, in the upstream river suggesting its diverse role in hypo-osmotic regulatory acclimation. Nevertheless, the H+-ATPase activity of both the tissues increased with the freshwater entry and remained similar during up-river movement into the freshwater environment. The results confirm that the pseudobranchial NKA 1 α-subunit mRNA expression and activity mimic its branchial counterpart in the process of ionoregulatory acclimation during migration through salt barriers. Also, the increase in the activities of pseudobranchial and branchial CA in concert with H+-ATPase (HAT) during freshwater acclimation of hilsa suggests their critical involvement in ion uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol Ren Physiol 275:633–650

    Google Scholar 

  • Bridges CR, Berenbrink M, Müller R, Waser W (1998) Physiology and biochemistry of the pseudobranch: an unanswered question? Comp Biochem Physiol A 119(1):67–77

    CAS  Google Scholar 

  • Bystriansky JS, Richards JG, Schulte PM, Ballantyne JS (2006) Reciprocal expression of gill Na+/K+-ATPase α-subunit isoforms α1a and α1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance. J Exp Biol 209(10):1848–1858

    CAS  PubMed  Google Scholar 

  • Chandrasekar S, Nich T, Tripathi G, Sahu NP, Pal AK, Dasgupta S (2014) Acclimation of brackish water pearl spot (Etroplus suratensis) to various salinities: relative changes in abundance of branchial Na+/K+-ATPase and Na+/K+/2Cl− co-transporter in relation to osmoregulatory parameters. Fish Physiol Biochem 40(3):983–996

    CAS  PubMed  Google Scholar 

  • Chang IC, Hwang PP (2004) Cl uptake mechanism in freshwater-adapted tilapia (Oreochromis mossambicus). Physiol Biochem Zool 77:406–414

    CAS  PubMed  Google Scholar 

  • Conley DM, Mallatt J (1988) Histochemicallocalisation of Na+–K+ ATPase and carbonic anhydrase activity in gills of 17 fish species. Can J Zool 66(11):2398–2405

    Google Scholar 

  • Cutler CP, Sanders IL, Hazon N, Cramb G (1995a) Primary sequence, tissue specificity and mRNA expression of the Na+,K+-ATPase β1 subunit in the European eel (Anguilla anguilla). Fish Physiol Biochem 14(5):423–429

    CAS  PubMed  Google Scholar 

  • Cutler CP, Sanders IL, Hazon N, Cramb G (1995b) Primary sequence, tissue specificity and expression of the Na+,K+-ATPase α 1 subunit in the European eel (Anguilla anguilla). Comp Biochem Physiol B 111(4):567–573

    CAS  PubMed  Google Scholar 

  • Dendy LA, Philpott CW, Deter RL (1973) Localization of Na+,K+-ATPase and other enzymes in teleost pseudobranch: II. Morphological characterization of intact pseudobranch, subcellular fractions, and plasma membrane substructure. J Cell Biol 57(3):689–703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drabkin DL, Austin JH (1935) Spectrophotometric studies V. a technique for the analysis of undiluted blood and concentrated hemoglobin solutions. J Biol Chem 112(1):105–115

    CAS  Google Scholar 

  • Dutta S, Ray SK, Pailan GH, Suresh VR, Dasgupta S (2019) Alteration in branchial NKA and NKCC ion-transporter expression and ionocyte distribution in adult hilsa during up-river migration. J Comp Physiol B 189(1):69–80

    CAS  PubMed  Google Scholar 

  • Esaki M, Hoshijima K, Kobayashi S, Fukuda H, Kawakami K, Hirose S (2007) Visualization in zebrafish larvae of Na+ uptake in mitochondria-rich cells whose differentiation is dependent on foxi3a. Am J Physiol Integr Comp Physiol 292(1):470–480

    Google Scholar 

  • Evans DH (1984) Gill Na+/H+ and Cl-/HCO3- exchange systems evolved before the vertebrates entered fresh water. J Exp Biol 113(1):465–469

    CAS  PubMed  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85(1):97–177

    CAS  PubMed  Google Scholar 

  • Ferreira-Martins D, Coimbra J, Antunes C, Wilson JM (2016) Effects of salinity on upstream-migrating, spawning sea lamprey, Petromyzon marinus. Conserv Physiol 4(1):1–16

    Google Scholar 

  • Flores AM, Shrimpton JM, Patterson DA, Hills JA, Cooke SJ, Yada T, Moriyama S, Hinch SG, Farrell AP (2012) Physiological and molecular endocrine changes in maturing wild sockeye salmon, Oncorhynchus nerka, during ocean and river migration. J Comp Physiol B182(1):77–90

    Google Scholar 

  • Genovese G, Ortiz N, Urcola MR, Luquet CM (2005) Possible role of carbonic anhydrase, V–H+–ATPase, and Cl/HCO3 exchanger in electrogenic ion transport across the gills of the euryhaline crab Chasmagnathus granulatus. Comp Biochem Physiol A 142(3):362–369

    CAS  Google Scholar 

  • Hamidian G, Alboghobeish N (2007) Histological study of pseudobranch in Ctenopharyngodon idella. AATEX 14:693–696

    Google Scholar 

  • Henry RP (1988a) Multiple functions of carbonic anhydrase in the crustacean gill. J Exp Zool 248(1):19–24

    CAS  Google Scholar 

  • Henry RP (1988b) Subcellular distribution of carbonic anhydrase activity in the gills of the blue crab, Callinectes sapidus. J Exp Zool 245(1):1–8

    CAS  Google Scholar 

  • Henry RP, Gehnrichc S, Weihrauchd D, Towle DW (2003) Salinity-mediated carbonic anhydrase induction in the gills of the euryhaline green crab, Carcinus maenas. Comp Biochem Physiol A136:243–258

    Google Scholar 

  • Hiroi J, McCormick SD (2007) Variation in salinity tolerance, gill Na+/K+-ATPase, Na+/K+/2Cl–cotransporter and mitochondria-rich cell distribution in three salmonids Salvelinus namaycush, Salvelinus fontinalis and Salmo salar. J Exp Biol 210(6):1015–1024

    CAS  PubMed  Google Scholar 

  • Hiroi J, McCormick SD (2012) New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. Respir Physiol Neurobiol 184(3):257–268

    CAS  PubMed  Google Scholar 

  • Hirose S, Kaneko T, Naito N, Takei Y (2003) Molecular biology of major components of chloride cells. Comp Biochem Physiol B 136(4):593–620

    PubMed  Google Scholar 

  • Horng JL, Lin LY, Huang CJ, Katoh F, Kaneko T, Hwang PP (2007) Knockdown of V-ATPase subunit a (atp6v1a) impairs acid secretion and ion balance in zebrafish (Daniorerio). Am J Physiol Integr Comp Physiol 292(5):2068–2076

    Google Scholar 

  • Hwang PP, Lee TH (2007) New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A 148(3):479–497

    Google Scholar 

  • Kirschner LB (1979) Control of the extracellular fluid osmolarity, control mechanisms in crustaceans and fishes. In: Gilles R (ed) Mechanisms of osmoregulation in animals. Wiley, New York, pp 157–222

    Google Scholar 

  • Kwon JY, McAndrew BJ, Penman DJ (2001) Cloning of brain aromatase gene and expression of brainand ovarian aromatase genes during sexual differentiation in genetic male and female Nile tilapia Oreochromis niloticus. Mol Reprod Dev 59(4):359–370

    CAS  PubMed  Google Scholar 

  • Laurent P, Dunel-Erb S (1984) The pseudobranch: morphology and function. In: Hoar WS, Randall DJ (eds) Fish physiology. Academic, New York, pp 285–323

    Google Scholar 

  • Laurent P, Perry SF (1990) Effects of cortisol on gill chloride cell morphology and ionic uptake in the freshwater trout, Salmo gairdneri. Cell Tissue Res 259:429–442

    CAS  Google Scholar 

  • Lin H, Randall D (1991) Evidence for the presence of an electrogenic proton pump on the trout gill epithelium. J Exp Biol 161(1):119–134

    Google Scholar 

  • Lin LY, Horng JL, Kunkel JG, Hwang PP (2006) Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am J Phys Cell Phys 290(2):371–378

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Luquet CM, Postel U, Halperin J, Urcola MR, Marques R, Siebers D (2002) Transepithelial potential differences and Na+ flux in isolated perfused gills of the crab Chasmagnathus granulatus (Grapsidae) acclimated to hyper-and hypo-salinity. J Exp Biol 205(1):71–77

    CAS  PubMed  Google Scholar 

  • Maren TH (1967) Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev 47(4):595–781

    CAS  PubMed  Google Scholar 

  • Marshall WS (2002) Na+, Cl, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis. J Exp Zool 293(3):264–283

    CAS  PubMed  Google Scholar 

  • Marshall WS, Grosell M (2006) Ion transport, osmoregulation, and acid-base balance. In: Evans DH, Claiborne J (eds) The physiology of fishes. CRC Press, Boca Raton, pp 177–230

    Google Scholar 

  • Mashiter KE, Morgan MRJ (1975) Carbonic anhydrase levels in the tissues of flounders adapted to seawater and freshwater. Comp Biochem Physiol A 52(4):713–717

    CAS  PubMed  Google Scholar 

  • Mattey DL, Moate R, Morgan M (1978) Comparison of ‘Pseudobranch’ type and ‘chloride’ type cells in the pseudobranch of marine, freshwater and euryhaline teleosts. J Fish Biol 13(5):535–542

    Google Scholar 

  • Mattey DL, Morgan M, Wright DE (1980) A scanning electron microscope study of the pseudobranchs of two marine teleosts. J Fish Biol 16(3):331–343

    Google Scholar 

  • McCormick SD (1993) Methods for nonlethal gill biopsy and measurement of Na+,K+-ATPase activity. Can J Fish Aquat Sci 50(3):656–658

    CAS  Google Scholar 

  • McCormick SD, Regish AM, Christensen AK (2009) Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon. J Exp Biol 212(24):3994–4001

    CAS  PubMed  Google Scholar 

  • McCormick SD, Regish AM, Christensen AK, Björnsson BT (2013) Differential regulation of sodium-potassium pump isoforms during smolt development and seawater exposure of Atlantic salmon. J Exp Biol 216(7):1142–1151

    CAS  PubMed  Google Scholar 

  • Molich A, Waser W, Heisler N (2009) The teleost pseudobranch: a role for preconditioning of ocular blood supply? Fish Physiol Biochem 35(2):273–286

    PubMed  Google Scholar 

  • Nordlie FG (2009) Environmental influences on regulation of blood plasma/serum components in teleost fishes: a review. Rev Fish Biol Fish 19(4):481–564

    Google Scholar 

  • Onuma TA, Ban M, Makino K, Katsumata H, Hu W, Ando H, Fukuwaka MA, Azumaya T, Urano A (2010) Changes in gene expression for GH/PRL/SL family hormones in the pituitaries of homing chum salmon during ocean migration through upstream migration. Gen Comp Endocrinol 166(3):537–548

    CAS  PubMed  Google Scholar 

  • Parks SK, Tresguerres M, Goss GG (2008) Theoretical considerations underlying Na+ uptake mechanisms in freshwater fishes. Comp Biochem Physiol 148:411–418

    Google Scholar 

  • Phylip FJ (1989) Phylogeny interference package. Cladistics 5:164–166

    Google Scholar 

  • Qi D, Xia M, Chao Y, Zhao Y, Wu R (2017) Identification, molecular evolution of toll-like receptors in a Tibetan schizothoracine fish (Gymnocypris eckloni) and their expression profiles in response to acute hypoxia. Fish Shellfish Immunol 68:102–113

    CAS  PubMed  Google Scholar 

  • Quinn MC, Veillette PA, Young G (2003) Pseudobranch and gill Na+,K+-ATPase activity in juvenile chinook salmon, Oncorhynchus tshawytscha: developmental changes and effects of growth hormone, cortisol and seawater transfer. Comp Biochem Physiol A 135(2):49–262

    Google Scholar 

  • Richards JG, Semple JW, Bystriansky JS, Schulte PM (2003) Na+,K+-ATPase α isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer. J Exp Biol 206(24):4475–4486

    CAS  PubMed  Google Scholar 

  • Shrimpton JM, Patterson DA, Richards JG, Cooke SJ, Schulte PM, Hinch SG, Farrell AP (2005) Ionoregulatory changes in different populations of maturing sockeye salmon Oncorhynchus nerka during ocean and river migration. J Exp Biol 208(21):4069–4078

    CAS  PubMed  Google Scholar 

  • Singh ON, Ghosh TK, Munshi JD (1986) Structure of pseudobranch of two clupeoid fishes, Hilsa ilisha and Gadusia chapra. Proc Indian Natl Sci Acad B 52(2):274–279

    Google Scholar 

  • Sobotka H, Kann S (1941) Carbonic anhydrase in fishes and invertebrates. J Cell Physiol 17(3):341–348

    CAS  Google Scholar 

  • Tang CH, Lai DY, Lee TH (2012) Effects of salinity acclimation on Na+/K+–ATPase responses and FXYD11 expression in the gills and kidneys of the Japanese eel (Anguilla japonica). Comp Biochem Physiol A 163(3–4):302–310

    CAS  Google Scholar 

  • Tipsmark CK, Breves JP, Seale AP, Lerner DT, Hirano T, Grau EG (2011) Switching of Na+,K+-ATPase isoforms by salinity and prolactin in the gill of a cichlid fish. J Endocrinol 209:237–244

    CAS  PubMed  Google Scholar 

  • Tong C, Lin Y, Zhang C, Shi J, Qi H, Zhao K (2015) Transcriptome-wide identification, molecular evolution and expression analysis of Toll-like receptor family in a Tibet fish, Gymnocypris przewalskii. Fish Shellfish Immunol 46:334–345

    CAS  PubMed  Google Scholar 

  • Towle DW, Rushton ME, Heidysch S, Magnani JJ, Rose MJ, Amstutz A, Jordan MK, Shearer DW, Wu WS (1997) Sodium/proton antiporter in the euryhaline crab Carcinus maenas: molecular cloning, expression and tissue distribution. J Exp Biol 200(6):1003–1014

    CAS  PubMed  Google Scholar 

  • Urbina MA, Glover CN (2015) Effect of salinity on osmoregulation, metabolism and nitrogen excretion in the amphidromous fish, inanga (Galaxias maculatus). J Exp Mar Biol Ecol 473:7–15

    CAS  Google Scholar 

  • Urbina MA, Schulte PM, Bystriansky JS, Glover CN (2013) Differential expression of Na+, K+-ATPase α-1 isoforms during seawater acclimation in the amphidromousgalaxiid fish Galaxias maculatus. J Comp Physiol B 183(3):345–357

    CAS  PubMed  Google Scholar 

  • Xia M, Chao Y, Jia J, Li C, Kong Q, Zhao Y, Guo S, Qi D (2016) Changes of hemoglobin expression in response to hypoxia in a Tibetan schizothoracine fish, Schizopygopsi spylzovi. J Comp Physiol B 186:1033–1043

    CAS  PubMed  Google Scholar 

  • Yang WK, Kang CK, Chang CH, Hsu AD, Lee TH, Hwang PP (2013) Expression profiles of branchial FXYD proteins in the brackish medaka Oryzias dancena: a potential saltwater fish model for studies of osmoregulation. PLoS One 8(1):e55470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SH, Kang CK, Kung HN, Lee TH (2014) The lamellae-free-type pseudobranch of the euryhaline milkfish (Chanos chanos) is a Na+,K+-ATPase-abundant organ involved in hypo-osmoregulation. Comp Biochem Physiol A 170:15–25

    CAS  Google Scholar 

  • Yang SH, Kang CK, Hu YC, Yen LC, Tsai SC, Hsieh YL, Lee TH (2015) Comparisons of two types of teleosteanpseudobranchs, silver moony (Monodactylus argenteus) and tilapia (Oreochromis mossambicus), with salinity-dependent morphology and ion transporter expression. J Comp Physiol B 185(6):677–693

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr Gopal Krishna, Director and Vice-chancellor, Indian Council of Agricultural Research- Central Institute of Fisheries Education (ICAR-CIFE), Mumbai, for providing facilities. We thank Mr Saumya Kanti Ray and Ms Soumi Dutta, research fellow, NASF project for assistance in fish capturing and sampling. The first author acknowledges Indian Council of Agricultural Research, New Delhi for the Masters’ fellowship at ICAR-CIFE, Mumbai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Dasgupta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Varghese, T., Sahu, N. et al. Pseudobranch mimics gill in expressing Na+K+-ATPase 1 α-subunit and carbonic anhydrase in concert with H+-ATPase in adult hilsa (Tenualosa ilisha) during river migration. Fish Physiol Biochem 46, 725–738 (2020). https://doi.org/10.1007/s10695-019-00746-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-019-00746-y

Keywords

Navigation