Skip to main content
Log in

The C-terminal kinesin motor KIFC1 may participate in nuclear reshaping and flagellum formation during spermiogenesis of Larimichthys crocea

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Spermatogenesis is a highly ordered process in the differentiation of male germ cells. Nuclear morphogenesis is one of the most fundamental cellular transformations to take place during spermatogenesis. These striking transformations from spermatogonia to spermatozoa are a result of phase-specific adaption of the cytoskeleton and its association with molecular motor proteins. KIFC1 is a C-terminal kinesin motor protein that plays an essential role in acrosome formation and nuclear reshaping during spermiogenesis in mammals. To explore its functions during the same process in Larimichthys crocea, we cloned and characterized the cDNA of a mammalian KIFC1 homolog (termed lc-KIFC1) from the total RNA of the testis. The 2481 bp complete lc-KIFC1 cDNA contained a 53 bp 5′ untranslated region, a 535 bp 3′ untranslated region, and a 1893 bp open reading frame that encoded a special protein of 630 amino acids. The predicted lc-KIFC1 protein possesses a divergent tail region, stalk region, and conserved carboxyl motor region. Protein alignment demonstrated that lc-KIFC1 had 73.2, 49.8, 49.3, 54.6, 56.5, 53.1, and 52.1% identity with its homologs in Danio rerio, Eriocheir sinensis, Octopus tankahkeei, Gallus gallus, Xenopus laevis, Mus musculus, and Homo sapiens, respectively. Tissue expression analysis revealed that lc-kifc1 mRNA was mainly expressed in the testis. The trend of lc-kifc1 mRNA expression at different growth stages of the testis showed that the expression increased first and then decreased, in the stage IV of testis, its expression quantity achieved the highest level. In situ hybridization and immunofluorescence results showed that KIFC1 was localized around the nucleus in early spermatids. As spermatid development progressed, the signals increased substantially. These signals peaked and were concentrated at one end of the nucleus when the spermatids began to undergo dramatic changes. In the mature sperm, the signal for KIFC1 gradually became weak and was mainly localized in the tail. In summary, evaluation of the expression pattern for lc-KIFC1 at specific stages of spermiogenesis has shed light on the potential functions of this motor protein in major cytological transformations. In addition, this study may provide a model for researching the molecular mechanisms involved in spermatogenesis in other teleost species, which will lead to a better understanding of the teleost fertilization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

KIFC1:

C-terminal kinesin C1

KHCs:

Kinesin heave chains

KLCs:

Kinesin light chains

AFS:

Acroframosome

LCx:

Lamellar complex

CTK2:

C-terminal kinesin-2

qRT-PCR:

Real-time quantitative polymerase chain reaction

RACE:

Rapid amplification of cDNA ends

UTR:

Untranslated region

ORF:

Open reading frame

ISH:

In situ hybridization

IF:

Immunofluorescence

O.C.T:

Optimum cutting temperature

PBS:

Phosphate-buffered saline

DEPC:

Diethyl pyrocarbonate

SSC:

Standard sodium chloride

DIG:

Digoxigenin

PFA:

Paraformaldehyde

BSA:

Albumin from bovine serum

SD:

Standard deviation

References

  • Bernasconi P, Cappelletti C, Navone F, Nessi V, Baggi F, Vernos I, Romaggi S, Confalonieri P, Mora M, Morandi L, Mantegazza R (2008) The kinesin superfamily motor protein KIF4 is associated with immune cell activation in idiopathic inflammatory myopathies. J Neuropathol Exp Neurol 67(6):624–632

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Weaver LN, Ems-McClung SC, Walczak CE (2009) Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules. Mol Biol Cell 20:1348–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diefenbach RJ, Mackay JP, Armati PJ, Cunningham AL (1998) The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry 37:16663–16670

    Article  CAS  PubMed  Google Scholar 

  • Ems-McClung SC, Zheng YX, Walczak CE (2004) Importin α/β and ran-GTP regulate XCTK2 microtubule binding through a bipartite nuclear localization signal. Mol Biol Cell 15:46–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endow SA, Chandra R, Komma DJ, Yamamoto AH, Salmon ED (1994) Mutants of the Drosophila NCD microtubule motor protein cause centrosomal and spindle pole defects in mitosis. J Cell Sci 107:859–867

    CAS  PubMed  Google Scholar 

  • Fawcett DW (1975) The mammalian spermatozoon. Dev Biol 44(2):394–436

    Article  CAS  PubMed  Google Scholar 

  • Goshima G, Vale RD (2005) Cell cycle-dependent dynamics and regulation of mitotic kinesins in Drosophila S2 cells. Mol Biol Cell 16:3896–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Kokkinaki M, Dym M (2009) Signaling molecules and pathways regulating the fate of spermatogonial stem cells. Microsc Res Tech 72:586–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermo L, Pelletier RM, Cyr DG, Smith CE (2010a) Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: background to spermatogenesis, spermatogonia, and spermatocytes. Microsc Res Tech 73:241–278

    Article  PubMed  Google Scholar 

  • Hermo L, Pelletier RM, Cyr DG, Smith CE (2010b) Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 2: changes in spermatid organelles associated with development of spermatozoa. Microsc Res Tech 73:279–319

    Article  CAS  PubMed  Google Scholar 

  • Hess RA, Renato FL (2008) Spermatogenesis and cycle of the seminiferous epithelium. Adv Exp Med Biol 636:1–15

    PubMed  Google Scholar 

  • Hirokawa N, Noda Y (2008) Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol Rev 88:1089–1118

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa N, Takemura R (2004) Kinesin superfamily proteins and their various functions and dynamics. Exp Cell Res 301:50–59

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10:682–696

    Article  CAS  PubMed  Google Scholar 

  • Ho NY, Li VWT, Poon WL, Cheng SH (2008) Cloning and developmental expression of kinesin superfamily7 (kif7) in the brackish medaka (Oryzias melastigma), a close relative of the Japanese medaka (Oryzias latipes). Mar Pollut Bull 57:425–432

    Article  CAS  PubMed  Google Scholar 

  • Hou CC, Yang WX (2013) Acroframosome-dependent KIFC1 facilitates acrosome formation during spermatogenesis in the caridean shrimp Exopalaemon modestus. PLoS One 8:e76065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu JR, Xu N, Tan FQ, Wang DH, Liu M, Yang WX (2012) Molecular characterization of a KIF3A-like kinesin gene in the testis of the Chinese fire-bellied newt Cynops orientalis. Mol Biol Rep 39:4207–4214

    Article  CAS  PubMed  Google Scholar 

  • Hu JR, Liu M, Wang DH, Hu YJ, Tan FQ, Yang WX (2013) Molecular characterization and expression analysis of a KIFC1-like kinesin gene in the testis of Eumeces chinensis. Mol Biol Rep 40:6645–6655

    Article  CAS  Google Scholar 

  • Kikkawa M (2008) The role of microtubules in processive kinesin movement. Trends Cell Biol 18(3):128–135

    Article  CAS  PubMed  Google Scholar 

  • Kimmins S, Kotaja N, Fienga G, Kolthur US, Brancorsini S, Hogeveen K, Monaco L, Sassone-Corsi P (2004) A specific programme of gene transcription in male germ cells. Reprod BioMed Online 8(5):496–500

    Article  PubMed  Google Scholar 

  • Kotaja N, De Cesare D, Macho B, Monaco L, Brancorsini S, Goossens E, Tournaye H, Gansmuller A, Sassone-Corsi P (2004a) Abnormal sperm in mice with targeted deletion of the act (activator of cAMP-responsive element modulator in testis) gene. Proc Natl Acad Sci U S A 101:10620–10625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence CJ, Dawe RK, Christie KR et al (2004) A standardized kinesin nomenclature. J Cell Biol 167(1):19–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Pan CY, Zheng BH, Xiang L, Yang WX (2010) Immunocytochemical studies on the acroframosome during spermiogenesis of the caridean shrimp Macrobrachium nipponense (Crustacea, Natantia). Invertebr Reprod Dev 54(3):121–131

    Article  CAS  Google Scholar 

  • Lui WY, Cheng CY (2008) Transcription regulation in spermatogenesis. Adv Exp Med Biol 636:115–132

    Article  CAS  PubMed  Google Scholar 

  • Miki H, Setou M, Kaneshiro K, Hirokawa N (2001) All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci U S A 98:7004–7011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miki H, Okada Y, Hirokawa N (2005) Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15:467–476

    Article  CAS  PubMed  Google Scholar 

  • Mountain V, Simerly C, Howard L, Ando A, Schatten G et al (1999) The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. J Cell Biol 147:351–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay A, Nieves E, Che FY, Wang J, Jin LJ, Murray JW, Gordon K, Angeletti RH, Wolkoff AW (2011) Proteomic analysis of endocytic vesicles: Rab1a regulates motility of early endocytic vesicles. J Cell Sci 124(5):765–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nath S, Bananis E, Sarkar S, Stockert RJ, Sperry AO, Murray JW, Wolkoff AW (2007) Kif5B and Kifc1 interact and are required for motility and fission of early endocytic vesicles in mouse liver. Mol Biol Cell 18(5):1839–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navolanic PM, Sperry AO (2000) Identification of isoforms of a mitotic motor in mammalian spermatogenesis. Biol Reprod 62:1360–1369

    Article  CAS  PubMed  Google Scholar 

  • Noda Y, Sato-Yoshitake R, Kondo S, Nangaku M, Hirokawa N (1995) KIF2 is a new microtubule-based anterograde motor that transports membranous organelles distinct from those carried by kinesin heavy chain or KIF3A/B. J Cell Biol 129:157–167

    Article  CAS  PubMed  Google Scholar 

  • Noda Y, Okada Y, Saito N, Setou M, Xu Y, Zhang Z, Hirokawa N (2001) KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated Triton-insoluble membranes. J Cell Biol 155:77–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oakberg EF (1956) A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal. Am J Anat 99:391–413

    Article  CAS  PubMed  Google Scholar 

  • Saito N, Okada Y, Noda Y, Kinoshita Y, Kondo S, Hirokawa N (1997) KIFC2 is a novel neuron-specific C-terminal type kinesin superfamily motor for dendritic transport of multivesicular body-like organelles. Neuron 18:425–438

    Article  CAS  PubMed  Google Scholar 

  • Sperry AO, Zhao LP (1996) Kinesin-related proteins in the mammalian testes: candidate motors for meiosis and morphogenesis. Mol Biol Cell 7:289–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan FQ, Ma XX, Zhu JQ, Yang WX (2013) The expression pattern of the C-terminal kinesin gene kifc1 during the spermatogenesis of Sepiella maindroni. Gene 532:53–62

    Article  CAS  PubMed  Google Scholar 

  • Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480

    Article  CAS  PubMed  Google Scholar 

  • Walczak CE, Verma S, Mitchison TJ (1997) XCTK2: a kinesinrelated protein that promotes mitotic spindle assembly in Xenopus laevis egg extracts. J Cell Biol 136(4):859–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Sperry AO (2008) Identification of a novel leucine-rich repeat protein and candidate PP1 regulatory subunit expressed in developing spermatids. BMC Cell Biol 9:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Dang R, Zhu JQ, Yang WX (2010a) Identification and dynamic transcription of KIF3A homologue gene in spermiogenesis of octopus tankahkeei. Comp Biochem Physiol 157:237–245

    Article  Google Scholar 

  • Wang W, Zhu JQ, Yang WX (2010b) Molecular cloning and characterization of KIFC1-like kinesin gene (ot-kifc1) from Octopus tankahkeei. Comp Biochem Physiol 156:174–182

    Article  Google Scholar 

  • Wang W, Zhu JQ, Yu HM, Tan FQ, Yang WX (2010c) KIFC1-like motor protein associates with the cephalopod manchette and participates in sperm nuclear morphogenesis in Octopus tankahkeei. PLoS One 5:e15616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YT, Mao H, Hou CC, Sun X, Wang DH, Zhou H, Yang WX (2012) Characterization and expression pattern of KIFC1-like kinesin gene in the testis of the Macrobrachium nipponense with discussion of its relationship with structure lamellar complex (LCx) and acroframosome (AFS). Mol Biol Rep 39(7):7591–7598

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Takeda S, Nakata T, Noda Y, Tanaka Y, Hirokawa N (2002) Role of KIFC3 motor protein in Golgi positioning and integration. J Cell Biol 158:293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WX, Sperry AO (2003) C-terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport. Biol Reprod 69:1719–1729

    Article  CAS  PubMed  Google Scholar 

  • Yang WX, Jefferson H, Sperry AO (2006) The molecular motor KIFC1 associates with a complex containing nucleoporin NUP62 that is regulated during development and by the small GTPase RAN. Biol Reprod 74:684–690

    Article  CAS  PubMed  Google Scholar 

  • Yu KM, Hou L, Zhu JQ, Ying XP, Yang WX (2009) KIFC1 participates in acrosomal biogenesis, with discussion of its importance for the perforatorium in the Chinese mitten crab Eriocheir sinensis. Cell Tissue Res 337:113–123

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Sperry AO (2004) Comparative analysis of two C-terminal kinesin motor proteins: KIFC1 and KIFC5A. Cell Motil Cytoskel 58:213–230

    Article  CAS  Google Scholar 

  • Zhang Y, Oko R, van der Hoorn FA (2004) Rat kinesin light chain 3 associates with spermatid mitochondria. Dev Biol 275:23–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu CJ, Zhao J, Bibikova M, Leverson JD, Wetzel EB, Fan JB, Abraham RT, Jiang W (2005) Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol Biol Cell 16(7):3187–3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Y, Millette CF, Sperry AO (2002) KRP3A and KRP3B: candidate motors in spermatid maturation in the seminiferous epithelium. Biol Reprod 66:843–855

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all members of the Fish Reproduction Physiology Laboratory at Ningbo University for their helpful suggestion. This project was partially supported by the Scientific and Technical Project of Zhejiang Province (2016C02055-7), the National Natural Science Foundation of China (No. 31272642), Scientific and Technical Project of Ningbo (No. 2015C110005), Ningbo Natural Science Foundation (No.2016A610081), the Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, K.C. Wong Magna Fund in Ningbo University, and Scientific Research Foundation of Graduate School of Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cong-Cong Hou or Jun-Quan Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, DD., Gao, XM., Zhao, YQ. et al. The C-terminal kinesin motor KIFC1 may participate in nuclear reshaping and flagellum formation during spermiogenesis of Larimichthys crocea . Fish Physiol Biochem 43, 1351–1371 (2017). https://doi.org/10.1007/s10695-017-0377-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-017-0377-9

Keywords

Navigation