Skip to main content

Advertisement

Log in

Molecular characterization of a KIF3A-like kinesin gene in the testis of the Chinese fire-bellied newt Cynops orientalis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

KIF3A, the subunit within the kinesin-2 superfamily, is a typically N-terminal motor protein, which is involved in membranous organelle and intraflagellar transport. During spermatogenesis, KIF3A plays a critical role in the formation of flagella and cilia. KIF3A is also related to the left–right asymmetry, the signal pathway, DNA damage and tumorigenesis. We used RT-PCR and in situ hybridization to clone the kif3a gene, and we identified its function in the testis of the Chinese fire-bellied newt Cynops orientalis (termed as co-kif3a). The full-length sequence of co-kif3a was 2193 bp, containing a 56 bp 5′UTR, 2073 bp ORF encoding a protein of 691 amino acids and a 64 bp 3′UTR. The secondary structure analysis showed that co-KIF3A had three motor domains, representing the N-terminal motor domain (1–400 aa), α-helix domain (400–600 aa) and C-terminal tail domain (600–691 aa). The amino acid sequence of co-KIF3A shared an identity of 55.9%, 90.9%, 89.9%, 91.3% and 85.7% with its counterparts in Aedes aegypti, Mus musculus, Xenopus tropicalis, Homo sapiens and Danio rerio, respectively. The calculated molecular weight of the putative co-KIF3A was 79 kDa and its estimated isoelectric point was 6.8. RT-PCR result showed that co-kif3a was expressed in several examined tissues, with a high level in the testis and low levels in liver, muscle and ovum. Kif3a was weakly expressed in the heart and spleen, and barely detected in the intestine. In situ hybridization analysis demonstrated that in early spermatid co-kif3a was expressed around the nuclear membrane. When the tail began to emerge in the middle spermatid, mRNA transcript was abundantly concentrated in the flagellum. The mRNA signal was still very strong along all the flagellum in late spermatid. In mature spermatid, the message was weak. Therefore, co-KIF3A probably plays a functional role in the spermiogenesis of C. orientalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yang WX, Sperry AO (2003) C-terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport. Biol Reprod 69(5):1719–1729

    Article  PubMed  CAS  Google Scholar 

  2. Garda AA, Teixeira RD, Colli GR, Bao SN (2004) Comparative analysis of the ultrastructure of three species of Phyllomedusa (Anura, Hylidae). Acta Zool 85:257–262

    Google Scholar 

  3. Hirokawa N (1996) Organelle transport along microtubules—the roles of KIFs. Trends Cell Biol 6(4):135–141

    Article  PubMed  CAS  Google Scholar 

  4. Miki H, Okada Y, Hirokawa N (2005) Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15(9):467–476

    Article  PubMed  CAS  Google Scholar 

  5. Hirokawa N, Noda Y, Okada Y (1998) Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr Opin Cell Biol 10(1):60–73

    Article  PubMed  CAS  Google Scholar 

  6. Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279(5350):519–526

    Article  PubMed  CAS  Google Scholar 

  7. Yang ZH, Goldstein LSB (1998) Characterization of the KIF3C neural kinesin-like motor from mouse. Mol Biol Cell 9:249–261

    PubMed  CAS  Google Scholar 

  8. Muresant V, Abramson T, Lyass A, Winter D, Porro E, Hong F, Chamberlin NL, Schnapp BJ (1998) KIF3C and KIF3A form a novel neuronal heteromeric kinesin that associates with membrane vesicles. Mol Biol Cell 9(3):637–652

    Google Scholar 

  9. Yamazaki H, Nakata T, Okada Y, Hirokawa N (1996) Cloning and characterization of KAP3: a novel kinesin superfamily associated protein of KIF3A/3B. Proc Natl Acad Sci USA 93(16):8443–8448

    Article  PubMed  CAS  Google Scholar 

  10. Mandelkow E, Mandelkow EM (2002) Kinesin motors and disease. Trends Cell Biol 12(12):585–591

    Article  PubMed  CAS  Google Scholar 

  11. Berezuk MA, Schroer TA (2004) Fractionation and characterization of kinesin II species in vertebrate brain. Traffic 5:503–513

    Article  PubMed  CAS  Google Scholar 

  12. Cole DG (2005) Intraflagellar transport: keeping the motors coordinated. Curr Biol 15:798–801

    Article  Google Scholar 

  13. Song B, Haycraft CJ, Seo HS, Yoder BK, Serra R (2007) Development of the post-natal growth plate requires intraflagellar transport proteins. Dev Biol 305(1):202–216

    Article  PubMed  CAS  Google Scholar 

  14. Serra R (2008) Role of intraflagellar transport and primary cilia in skeletal development. Anat Rec 291(9):1049–1061

    Article  CAS  Google Scholar 

  15. Wong SY, Reiter JF (2008) The primary cilium: at the crossroads of mammalian hedgehog signaling. Curr Top Dev Biol 85:225–260

    Article  PubMed  CAS  Google Scholar 

  16. Eggenschwiler JT, Anderson KV (2007) Cilia and developmental signaling. Annu Rev Cell Dev Biol 23:345–373

    Article  PubMed  CAS  Google Scholar 

  17. Ocbina PJR, Anderson KV (2008) Intraflagellar transport, cilia and mammalian Hedgehog signaling: analysis in mouse embryonic fibroblasts. Dev Dyn 237(8):2030–2038

    Article  PubMed  Google Scholar 

  18. Corbit KC, Shyer AE, Dowdle WE, Gaulden J, Singla V, Reiter JF (2008) Kif3a constrains β-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol 10(1):70–76

    Article  PubMed  CAS  Google Scholar 

  19. Spassky N, Han Y-G, Aguilar A, Strehl L, Besse L, Laclef C, Ros MR, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev Biol 317(1):246–259

    Article  PubMed  CAS  Google Scholar 

  20. Kolpakova-Hart E, Jinnin M, Hou B, Fukai N, Olsen BR (2007) Kinesin-2 controls development and patterning of the vertebrate skeleton by Hedgehog and Gli3-dependent mechanisms. Dev Biol 309(2):273–284

    Article  PubMed  CAS  Google Scholar 

  21. Brugmann S, Helms J (2007) Shaping up and shipping out: the role of cilia in growth and patterning. J Musculoskelet Neuronal Interact 7(4):300

    PubMed  CAS  Google Scholar 

  22. Koyama E, Young B, Nagayama M, Shibukawa Y, Enomoto-Iwamoto M, Iwamoto M, Maeda Y, Lanske B, Song B, Serra R, Pacifici M (2007) Conditional ablation causes abnormal hedgehog signaling topography, growth plate dysfunction, and excessive bone and cartilage formation during mouse skeletogenesis. Development 134(11):2159–2169

    Article  PubMed  CAS  Google Scholar 

  23. He X (2008) Cilia put a brake on wnt signaling. Nat Cell Biol 10:11–13

    Article  PubMed  CAS  Google Scholar 

  24. Haraguchi K, Hayashi T, Jimbo T, Yamamoto T, Akiyama T (2006) Role of the kinesin-2 family protein, kif3, during mitosis. J Biol Chem 281:4094–4099

    Article  PubMed  CAS  Google Scholar 

  25. Takeda S, Yonekawa Y, Tanaka Y, Okada Y, Nonaka S, Hirokawa N (1999) Left–right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A−/ mice analysis. J Cell Biol 145(4):825–836

    Article  PubMed  CAS  Google Scholar 

  26. Supp DM, Potter SS, Brueckner M (2000) Molecular motors: the driving force behind mammalian left–right development. Trends Cell Biol 10(2):41–45

    Article  PubMed  CAS  Google Scholar 

  27. Hirokawa N, Tanaka Y, Okada Y, Takeda S (2006) Nodal flow and the generation of left–right asymmetry. Cell 125:33–45

    Article  PubMed  CAS  Google Scholar 

  28. Marszalek JR, Ruiz-Lozano P, Roberts E, Chien KR, Goldstein LSB (1999) Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc Natl Acad Sci USA 96(9):5043–5048

    Article  PubMed  CAS  Google Scholar 

  29. Hasegawa T, Yagi A, Isobe K (2000) Interaction between GADD34 and the kinesin superfamily, KIF3A. Biochem Biophys Res Commun 267:593–596

    Article  PubMed  CAS  Google Scholar 

  30. Sathish N, Zhu FX, Yuan Y (2009) Kaposi’s sarcoma-associated herpesvirus ORF45 interacts with kinesin-2 transporting viral capsid-tegument complexes along microtubules. PLoS Pathog 5(3):e1000332

    Article  PubMed  Google Scholar 

  31. Mans DA, Lolkema MP, Beest M, Daenen LG, Voest EE, Giles RH (2008) Mobility of the von Hippel–Lindau tumour suppressor protein is regulated by kinesin-2. Exp Cell Res 314(6):1229–1236

    Article  PubMed  CAS  Google Scholar 

  32. Wong SY, Seol AD, So PL, Ermilov AN, Bichakjian CK, Epstein EH Jr, Dlugosz AA, Reiter JF (2009) Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med 15(9):1055–1061

    Article  PubMed  CAS  Google Scholar 

  33. Yanagawa T, Watanabe H, Takeuchi T, Fujimoto S, Kurihara H, Takagishi K (2004) Over expression of autocrine motility factor in metastatic tumor cells: possible association with augmented expression of KIF3A and GDI-β. Lab Invest 84(4):513–522

    Article  PubMed  CAS  Google Scholar 

  34. Tanuma N, Nomura M, Ikeda M, Kasugai I, Tsubaki Y, Takagaki K, Kawamura T, Yamashita Y, Sato I, Sato M, Katakura R, Kikuchi K, Shima H (2009) Protein phosphatase Dusp26 associates with KIF3 motor and promotes N-cadherin-mediated cell–cell adhesion. Oncogene 28(5):752–761

    Article  PubMed  CAS  Google Scholar 

  35. Yu K, Hou L, Zhu JQ, Ying XP, Yang WX (2009) KIFC1 participates in acrosomal biogenesis, with discussion of its importance for the perforatorium in the Chinese mitten crab Eriocheir sinensis. Cell Tissue Res 337(1):113–123

    Article  PubMed  CAS  Google Scholar 

  36. Wang DH, Yang WX (2010) Molecular cloning and characterization of KIFC1-like kinesin gene (es-KIFC1) in the testis of the Chinese mitten crab Eriocheirsinensis. Comp Biochem Physiol A Mol Integr Physiol 157(2):123–131

    Article  PubMed  Google Scholar 

  37. Wang W, Zhu JQ, Yang WX (2010) Molecular cloning and characterization of KIFC1-like kinesin gene (ot-kifc1) from Octopus tankahkeei. Comp Biochem Physiol B Mol Integr Physiol 156(3):174–182

    Article  Google Scholar 

  38. Selmi MG, Brizzi R, Bigliardi E (1997) Sperm morphology of salamandrids (Amphibia, Urodela): implications for phylogeny and fertilization biology. Tissue Cell 29(6):651–664

    Article  PubMed  CAS  Google Scholar 

  39. Romo E, Paniagua R, Fraile B, De Miguel MP (1999) Ultrastructure and lectin cytochemistry of the cloacal ventral glands in the male newt Triturus marmoratus marmoratus. Microsc Res Tech 45(2):122–129

    Article  PubMed  CAS  Google Scholar 

  40. Brizzi R, Delfino G, Tanteri G (2004) Cloacal anatomy of the palmate newt, Triturus helveticus (Amphibia, Salamandridae). Amphibia-Reptilia 25:233–245

    Article  Google Scholar 

  41. Valbuena G, Hernandez F, Madrid JF, Saez FJ (2008) Acrosome biosynthesis in spermatocytes and spermatids revealed by HPA lectin cytochemistry. Anat Rec 291:1097–1105

    Article  Google Scholar 

  42. Zhang P, Wake DB (2009) Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes. Mol Phylogenet Evol 53(2):492–508

    Article  PubMed  CAS  Google Scholar 

  43. Wedaman KP, Meyer DW, Rashid DJ, Cole DG, Scholey JM (1996) Sequence and submolecular localization of the ll5-kD accessory subunit of the heterotrimeric kinesin-II (KRP85/95) complex. J Cell Biol 132(3):371–380

    Article  PubMed  CAS  Google Scholar 

  44. Cole DG, Chinn SW, Wedaman KP, Hall K, Vuong T, Scholey JM (1993) Novel heterotrimeric kinesin-related protein purified from sea urchin eggs. Nature 366(18):268–270

    Article  PubMed  CAS  Google Scholar 

  45. Morris RL, Scholey JM (1997) Heterotrimeric kinesin-II is required for the assembly of motile 9+2 ciliary axonemes on sea urchin embryos. J Cell Biol 138(5):1009–1022

    Article  PubMed  CAS  Google Scholar 

  46. Henson JH, Cole DG, Roesener CD, Capuano S, Mendola RJ, Scholey JM (1997) The heterotrimeric motor protein kinesin-II localizes to the midpiece and flagellum of sea urchin and sand dollar sperm. Cell Motil Cytoskeleton 38:29–37

    Article  PubMed  CAS  Google Scholar 

  47. Miller MG, Mulholl DJ, Vogl AW (1999) Rat testis motor proteins associated with spermatid translocation (Dynein) and spermatid flagella (kinesin-II). Biol Reprod 60(4):1047–1056

    Article  PubMed  CAS  Google Scholar 

  48. Ho NY, Li VWT, Poon WL, Cheng SH (2008) Cloning and developmental expression of kinesin superfamily7 (KIF7) in the brackish medaka (Oryzias elastigma), a close relative of the Japanese medaka (Oryzias latipes). Mar Pollut Bull 57:425–432

    Article  PubMed  CAS  Google Scholar 

  49. Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LS, Goodson HV, Hirokawa N, Howard J, Malmberg RL, Mcintosh JR, Miki H, Mitchison TJ, Okada Y, Reddy AS, Saxton WM, Schliwa M, Scholey JM, Vale RD, Walczak CE, Wordeman L (2004) A standardized kinesin nomenclature. J Cell Biol 167(1):19–22

    Article  PubMed  CAS  Google Scholar 

  50. Nakajima T, Miura I, Kashiwagi A, Nakamura M (1997) Molecular cloning and expression of the KIF3A gene in the frog brain and testis. Zoolog Sci 14(6):917–921

    Article  PubMed  CAS  Google Scholar 

  51. Cahu J, Olichon A, Hentrich C, Schek H, Drinjakovic J, Zhang C, Doherty-Kirby A, Lajoie G, Surrey T (2008) Phosphorylation by Cdk1 increases the binding of Eg5 to microtubules in vitro and in Xenopus egg extract spindles. PLoS One 3(12):e3936

    Article  PubMed  Google Scholar 

  52. Messitt TJ, Gagnon JA, Kreiling JA, Pratt CA, Yoon YJ, Mowry KL (2008) Multiple kinesin motors coordinate cytoplasmic RNA transport on a subpopulation of microtubules in Xenopus oocytes. Dev Cell 15(3):426–436

    Article  PubMed  CAS  Google Scholar 

  53. Heinrich B, Deshler JO (2010) RNA localization to the Balbiani body in Xenopus oocytes is regulated by the energy state of the cell and is facilitated by kinesin II. RNA 15:524–536

    Article  Google Scholar 

  54. Giesecke A, Stewart M (2010) Novel binding of the mitotic regulator TPX2 (target protein for Xenopus kinesin-like protein 2) to importin-α. J Biol Chem 285:17628–17635

    Article  PubMed  CAS  Google Scholar 

  55. Kondo S, Sato-Yoshitake R, Noda Y, Aizawa H, Nakata T, Matsuura Y, Hirokawa N (1994) KIF3A is a new microtubule-based anterograde motor in the nerve axon. J Cell Biol 125(5):1095–1107

    Article  PubMed  CAS  Google Scholar 

  56. Ou G, Blacque OE, Snow JJ, Lerous MR, Scholey JM (2005) Functional coordination of intraflagellar transport motors. Nature 436:583–587

    Article  PubMed  CAS  Google Scholar 

  57. Blacque OE, Cevik S, Kaplan OI (2008) Intraflagellar transport: from molecular characterisation to mechanism. Front Biosci 13:2633–2652

    Article  PubMed  CAS  Google Scholar 

  58. Miller D, Briggs D, Snowden H, Hamlington J, Rollinson S, Lilford R, Krawetz SA (1999) A complex population of RNAs exists in human ejaculate spermatozoa: implications for understanding molecular aspects of spermiogenesis. Gene 237:385–392

    Article  PubMed  CAS  Google Scholar 

  59. Li L, Liu G, Fu JJ, Li LY, Tan XJ, Yang S, Lu GX (2008) Molecular cloning and characterization of a novel transcript variant of Mtsarg1 gene. Mol Biol Rep 36(5):1023–1032

    Article  PubMed  Google Scholar 

  60. Wang F, Song P, Gong W (2007) Two novel transcripts encoding two Ankyrin repeat containing proteins have preponderant expression during the mouse spermatogenesis. Mol Biol Rep 34(4):249–260

    Article  PubMed  CAS  Google Scholar 

  61. Zhou W, Song P (2006) Molecular cloning of a novel gene ZAhi-1 and its expression analysis during zebrafish gametogenesis. Mol Biol Rep 33(2):111–116

    Article  PubMed  CAS  Google Scholar 

  62. Nie D, Yang X, Yankai Z (2009) Molecular cloning and expression profile analysis of a novel mouse testis-specific expression gene mtIQ1. Mol Biol Rep 36(5):1203–1209

    Article  PubMed  CAS  Google Scholar 

  63. Wang W, Dang R, Zhu JQ, Yang WX (2010) Identification and dynamic transcription of KIF3A homologue gene in spermiogenesin of Octopus tankahkeei. Comp Biochem Physiol A Mol Integr Physiol 157(3):237–245

    Article  PubMed  Google Scholar 

  64. Sun X, Kovacs T, Hu YJ, Yang WX (2010) The role of actin and myosin during spermatogenesis. Mol Biol Rep. doi:10.1007/s11033-010-0517-0

Download references

Acknowledgments

We are indebted to all members of the Sperm Laboratory at Zhejiang University for their enlightening discussion. This project was supported in part by a project funded by the Department of Sci-Technology of Zhejiang Province, China (No. 2009C32059), National Natural Science Foundation of China (Nos. 31072198 and 40776079), and Zhejiang Provincial Natural Science Foundation of China (Grant No. Y2100296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Xi Yang.

Additional information

Jian-Rao Hu, Na Xu, and Fu-Qing Tan contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 524 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, JR., Xu, N., Tan, FQ. et al. Molecular characterization of a KIF3A-like kinesin gene in the testis of the Chinese fire-bellied newt Cynops orientalis . Mol Biol Rep 39, 4207–4214 (2012). https://doi.org/10.1007/s11033-011-1206-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1206-3

Keywords

Navigation