Skip to main content
Log in

Structure and function of corneal surface of mudskipper fishes

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Vertebrate corneal epithelium cell plays an important role for imaging, and the cell density, together with the appearance or type of affiliated microstructures, is considered as a result of evolution adapting to alternate terrestrial or aquatic environment. In this paper, we investigated the corneal cells of both larvae and adult amphibious mudskippers Boleophthalmus pectinirostris and Periophthalmus magnuspinnatus, to testify the relationship between morphology and function. The cell density values of the two species were 31,137 and 31,974 cells per mm2 in larvae and then significantly decreased to 15,826 and 25,954 cells per mm2 in adult (p < 0.001), respectively, which could be explained as the habitat change from aquatic to different degrees of terrestrial environment. The corneal epithelium cells were ridge type in larvae and differentiated into ridge type and reticular type in adult P. magnuspinnatus and ridge type, reticular type and ridge–reticular type in adult B. pectinirostris. Four kinds of microstructures as microridge, microvilli, microplicae and microhole appeared in both species. The difference of microridge width and its separation indicated that a dense cell connection was requested in a saltier and more terrestrial environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berra TM, Allen GR (1989) Burrowing, emergence, behavior and functional morphology of the Australian salamanderfish Lepidogalaxias salamandroides. Fisheries 14:2–10

    Article  Google Scholar 

  • Beuerman RW, Pedroza L (1996) Ultrastructure of the human cornea. Microsc Res Tech 33:320–335

    Article  CAS  PubMed  Google Scholar 

  • Collin SP, Collin HB (1997) The head and eye of the sandlance, Limnichthyes fasciatus—a field emission scanning electron microscope study. Clin Exp Optom 80:133–138

    Article  Google Scholar 

  • Collin SP, Collin HB (1998) The deep-sea teleost cornea: a comparative study of gadiform fishes. Histol Histopathol 13:325–336

    CAS  PubMed  Google Scholar 

  • Collin HB, Collin SP (2000a) The corneal surface of aquatic vertebrates: microstructures with optical and nutritional function? Philos Trans R Soc B Biol Sci 355:1171–1176

    Article  CAS  Google Scholar 

  • Collin SP, Collin HB (2000b) A comparative sem study of the vertebrate corneal epithelium. Cornea 19:218–230

    Article  CAS  PubMed  Google Scholar 

  • Collin SP, Collin HB (2006) The corneal epithelial surface in the eyes of vertebrates: environmental and evolutionary influences on structure and function. J Morphol 267:273–291

    Article  PubMed  Google Scholar 

  • Doughty MJ (1990) Analyses of areas and shapes of cells on the corneal surface of the albino rabbit by scanning electron microscopy. Curr Eye Res 9:295–306

    Article  CAS  PubMed  Google Scholar 

  • Doughty MJ (1991) Scanning electron microscopy study of cell dimensions of rabbit corneal epithelium surface. Cornea 10:149–155

    Article  CAS  PubMed  Google Scholar 

  • Doughty MJ (1998) Changes in cell surface primary cilia and microvilli concurrent with measurements of fluid flow across the rabbit corneal endothelium ex vivo. Tissue Cell 30:634–643

    Article  CAS  PubMed  Google Scholar 

  • Doughty MJ, Fong WK (1992) Topographical differences in cell area at the surface of the corneal epithelium of the pigmented rabbit. Curr Eye Res 11:1129–1136

    Article  CAS  PubMed  Google Scholar 

  • Eddy FB, Handy RD (2012) Ecological and environmental physiology of fish. Oxford University Press, Oxford

    Book  Google Scholar 

  • Haeckel E (1866) Generelle morphologie der organismen: allgemeine grundzuge der organischen formen wissenschaft, mechanisch begrundet durch die von Charles Darwin reformirte Descendez-Theorie. Georg Riemer, Berlin

    Book  Google Scholar 

  • Harman AM, Fleming PA, Hoskins RV, Moore SR (1997) Development and aging of cell topography in the human retinal pigment epithelium. Invest Ophthalmol Vis Sci 38:2016–2026

    CAS  PubMed  Google Scholar 

  • Hecht E (2002) Optics, 4th edn. Addison Wesley, San Francisco

    Google Scholar 

  • Horvath G, Varju D (1995) Underwater refraction-polarization patterns of skylight perceived by aquatic animals through Snell’s window of the flat water-surface. Vision Res 35:1651–1666

    Article  CAS  PubMed  Google Scholar 

  • Jerlov NG (1976) Marine optics. Elsevier, Amsterdam

    Google Scholar 

  • Kroger RH (1992) Methods to estimate dispersion in vertebrate ocular media. J Opt Soc Am A Opt Image Sci 9:1486–1490

    Article  CAS  Google Scholar 

  • Lohman LE, Rao GN, Tripathi RC, Tripathi BJ, Aquavella JV (1982) In vivo specular microscopy of edematous human corneal epithelium with light and scanning electron microscopic correlation. Ophthalmology 89:621–629

    Article  CAS  PubMed  Google Scholar 

  • Nichols B, Dawson CR, Togni B (1983) Surface features of the conjunctiva and cornea. Invest Ophthalmol Vis Sci 24:570–576

    CAS  PubMed  Google Scholar 

  • Pfister RR (1973) The normal surface of corneal epithelium: a scanning electron microscopic study. Invest Ophthalmol Vis Sci 12:654–668

    CAS  Google Scholar 

  • Simmich J, Temple SE, Collin SP (2012) A fish eye out of water: epithelial surface projections on aerial and aquatic corneas of the ‘four-eyed fish’ Anableps anableps. Clin Exp Optom 95:140–145

    Article  PubMed  Google Scholar 

  • Subramanian S, Ross NW, MacKinnon SL (2008) Comparison of antimicrobial activity in the epidermal mucus extracts of fish. Comp Biochem Physiol B Biochem Mol Biol 150:85–92

    Article  PubMed  Google Scholar 

  • Wu HL, Zhong JS (2008) Fauna siinica: ostichthyes perciformes (V): gobioidei. Science Press, Beijing

    Google Scholar 

  • You X, Bian C, Zan Q, Xu X, Liu X, Chen J, Wang J, Qiu Y, Li W, Zhang X, Sun Y, Chen S, Hong W, Li Y, Cheng S, Fan G, Shi C, Liang J, Tom Tang Y, Yang C, Ruan Z, Bai J, Peng C, Mu Q, Lu J, Fan M, Yang S, Huang Z, Jiang X, Fang X, Zhang G, Zhang Y, Polgar G, Yu H, Li J, Liu Z, Zhang G, Ravi V, Coon SL, Wang J, Yang H, Venkatesh B, Wang J, Shi Q (2014) Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes. Nat Commun 5:5594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Hong W (2006) The study review and prospect of Boleophthalmus pectinirostris. J Xiamen Univ (Nat Sci) 45:97–108 (in Chinese)

    Google Scholar 

  • Zhou T, Wang L, Tang W, Song X, Sun S (2012) Embryonic development and its salinity tolerance of Periophthalmus magnuspinnatus. Acta Hydrobiol Sin 36:913–921

    Article  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (No. 41476149).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Zhang or Bin Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Zhang, J. & Kang, B. Structure and function of corneal surface of mudskipper fishes. Fish Physiol Biochem 42, 1481–1489 (2016). https://doi.org/10.1007/s10695-016-0234-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-016-0234-2

Keywords

Navigation