Skip to main content
Log in

Characterization and genomic structure of Dnah9, and its roles in nodal signaling pathways in the Japanese flounder (Paralichthys olivaceus)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The nodal signaling pathway has been shown to play crucial roles in inducing and patterning the mesoderm and endoderm, as well as in regulating neurogenesis and left–right axis asymmetry. Here, we present the first complete cDNA and genomic sequences as well as the promoter predication of the Dnah9 gene in the Japanese flounder. The 15,558-bp-long cDNA is divided into 96 exons and spread over 138 kb of genomic DNA. Protein sequence comparison showed that it shares higher identity with other vertebrate orthologs, with an ATP binding dynein motor, AAA domain and microtubule binding stalk of dynein motor. Dnah9 exhibited maternal and ubiquitous expression in all cells of the early development stages, but became concentrated in the head at 1 DAH, as identified by qRT-PCR and in situ hybridization methods. Furthermore, after nodal signaling was inhibited, the level of Southpaw did not change significantly at early development stage (50 % epiboly) but increased significantly at late stages (27-somite stages and 1 DAH), as well as the expression of Lefty, an inhibitor of nodal signaling, increased continuously. On the other hand, the expression level of Dnah9 decreased. The transcription factor binding site of FAST-1 (SMAD interacting protein) was identified in the transcription region of Dnah9 by the promoter analysis, which might format the complexes of SMADs, FAST-1 and the transcription region of Dnah9 served as a bridge of Dnah9 and nodal signaling. All evidences indicated that Dnah9 might be downstream of nodal during the early development stages, and an indirect function through SMADs for nodal signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahlstrom EH, Amaoka K, Hensley DA, Moser HG, Sumida BY (1984) Pleuronectiformes: development. Ontogeny and systematics of fishes. Am Soc Ichthyol Herpetol Ser 1:640–670

    Google Scholar 

  • Asai DJ (2000) The analysis of dynein structure and function in ciliated protozoa. Jpn J Protozool 33:15–27

    Google Scholar 

  • Baker K, Holtzman NG, Burdine RD (2008) Direct and indirect roles for nodal signaling in two axis conversions during asymmetric morphogenesis of the zebrafish heart. Proc Natl Acad Sci USA 105(37):13924–13929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartoloni L, Blouin JL, Maiti AK, Sainsbury A, Rossier C, Gehrig C, She JX, Marron MP, Lander ES, Meeks M, Chung E, Armengot M, Jorissen M, Scott HS, Delozier-Blanchet CD, Gardiner RM, Antonarakis SE (2001) Axonemal beta heavy chain dynein DNAH9: cDNA sequence, genomic structure, and investigation of its role in primary ciliary dyskinesia. Genomics 72(1):21–33

    Article  CAS  PubMed  Google Scholar 

  • Bisgrove BW, Essner JJ, Yost HJ (1999) Regulation of midline development by antagonism of lefty and nodal signaling. Development 126(14):3253–3262

    CAS  PubMed  Google Scholar 

  • Branford WW, Yost HJ (2002) Lefty-dependent inhibition of Nodal- and Wnt-responsive organizer gene expression is essential for normal gastrulation. Curr Biol 12(24):2136–2141

    Article  CAS  PubMed  Google Scholar 

  • Concha ML, Burdine RD, Russell C, Schier AF, Wilson SW (2000) A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain. Neuron 28(2):399–409

    Article  CAS  PubMed  Google Scholar 

  • Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, Herrmann B, Robertson EJ (1994) A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120(7):1919–1928

    CAS  PubMed  Google Scholar 

  • Feldman B, Concha ML, Saude L, Parsons MJ, Adams RJ, Wilson SW, Stemple DL (2002) Lefty antagonism of Squint is essential for normal gastrulation. Curr Biol 12(24):2129–2135

    Article  CAS  PubMed  Google Scholar 

  • Fliegauf M, Olbrich H, Horvath J, Wildhaber JH, Zariwala MA, Kennedy M, Knowles MR, Omran H (2005) Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am J Respir Crit Care Med 171(12):1343–1349

    Article  PubMed Central  PubMed  Google Scholar 

  • Gamse JT, Thisse C, Thisse B, Halpern ME (2003) The parapineal mediates left–right asymmetry in the zebrafish diencephalon. Development 130(6):1059–1068

    Article  CAS  PubMed  Google Scholar 

  • Gee M, Vallee R (1998) The role of the dynein stalk in cytoplasmic and flagellar motility. Eur Biophys J 27(5):466–473

    Article  CAS  PubMed  Google Scholar 

  • Gibbons IR (1995) Dynein family of motor proteins: present status and future questions. Cell Motil Cytoskelet 32(2):136–144

    Article  CAS  Google Scholar 

  • Hashimoto H, Aritaki M, Uozumi K, Uji S, Kurokawa T, Suzuki T (2007) Embryogenesis and expression profiles of charon and nodal-pathway genes in sinistral (Paralichthys olivaceus) and dextral (Verasper variegatus) flounders. Zoolog Sci 24(2):137–146

    Article  CAS  PubMed  Google Scholar 

  • Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62(1):65–74

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Yoshioka H, Tao H, Thisse B, Thisse C, Vew C, Hamada H, Ohuchi H, Noji S (2000) Asymmetric expression of antivin/lefty1 in the early chick embryo. Mech Dev 90(1):115–118

    Article  CAS  PubMed  Google Scholar 

  • Karp G (2005) Cell and molecular biology: concepts and experiments. Wiley, Hoboken, pp 346–358. ISBN 0-471-19279-1

  • Koonce MP (1997) Identification of a microtubule-binding domain in a cytoplasmic dynein heavy chain. J Biol Chem 272(32):19714–19718

    Article  CAS  PubMed  Google Scholar 

  • Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA (2005) Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 132(8):1907–1921

    Article  CAS  PubMed  Google Scholar 

  • Liang JO, Etheridge A, Hantsoo L, Rubinstein AL, Nowak SJ, Izpisua Belmonte JC, Halpern ME (2000) Asymmetric nodal signaling in the zebrafish diencephalon positions the pineal organ. Development 127(23):5101–5112

    CAS  PubMed  Google Scholar 

  • Long S, Ahmad N, Rebagliati M (2003) The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left–right asymmetry. Development 130(11):2303–2316

    Article  CAS  PubMed  Google Scholar 

  • Massague J, Chen YG (2000) Controlling TGF-beta signaling. Genes Dev 14(6):627–644

    CAS  PubMed  Google Scholar 

  • Meno C, Gritsman K, Ohishi S, Ohfuji Y, Heckscher E, Mochida K, Shimono A, Kondoh H, Talbot WS, Robertson EJ, Schier AF, Hamada H (1999) Mouse Lefty2 and zebrafish antivin are feedback inhibitors of nodal signaling during vertebrate gastrulation. Mol Cell 4(3):287–298

    Article  CAS  PubMed  Google Scholar 

  • Milisav I, Jones MH, Affara NA (1996) Characterization of a novel human dynein-related gene that is specifically expressed in testis. Mamm Genome 7(9):667–672

    Article  CAS  PubMed  Google Scholar 

  • Moens C (2008) Whole mount RNA in situ hybridization on zebrafish embryos: hybridization. CSH Protoc 2008 pdb prot5037

  • Neesen J, Koehler MR, Kirschner R, Steinlein C, Kreutzberger J, Engel W, Schmid M (1997) Identification of dynein heavy chain genes expressed in human and mouse testis: chromosomal localization of an axonemal dynein gene. Gene 200(1–2):193–202

    Article  CAS  PubMed  Google Scholar 

  • Okabe N, Xu B, Burdine RD (2008) Fluid dynamics in zebrafish Kupffer’s vesicle. Dev Dyn 237(12):3602–3612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rebagliati MR, Toyama R, Fricke C, Haffter P, Dawid IB (1998) Zebrafish nodal-related genes are implicated in axial patterning and establishing left–right asymmetry. Dev Biol 199(2):261–272

    Article  CAS  PubMed  Google Scholar 

  • Reed W, Carson JL, Moats-Staats BM, Lucier T, Hu P, Brighton L, Gambling TM, Huang CH, Leigh MW, Collier AM (2000) Characterization of an axonemal dynein heavy chain expressed early in airway epithelial ciliogenesis. Am J Respir Cell Mol Biol 23(6):734–741

    Article  CAS  PubMed  Google Scholar 

  • Ryan AK, Blumberg B, Rodriguez-Esteban C, Yonei-Tamura S, Tamura K, Tsukui T, de la Pena J, Sabbagh W, Greenwald J, Choe S, Norris DP, Robertson EJ, Evans RM, Rosenfeld MG, Izpisua Belmonte JC (1998) Pitx2 determines left–right asymmetry of internal organs in vertebrates. Nature 394(6693):545–551

    Article  CAS  PubMed  Google Scholar 

  • Supp DM, Witte DP, Potter SS, Brueckner M (1997) Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice. Nature 389(6654):963–966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki T, Washio Y, Aritaki M, Fujinami Y, Shimizu D, Uji S, Hashimoto H (2009) Metamorphic pitx2 expression in the left habenula correlated with lateralization of eye-sidedness in flounder. Dev Growth Differ 51(9):797–808

    Article  CAS  PubMed  Google Scholar 

  • Thisse B, Thisse C (2004) Fast release clones: a high throughput expression analysis. ZFIN Direct Data Submission (http://zfin.org)

  • Tian T, Meng A (2006) Nodal signals pattern vertebrate embryos. Cell Mol Life Sci CMLS 63(6):672–685

    Article  CAS  PubMed  Google Scholar 

  • Vaisberg EA, Grissom PM, McIntosh JR (1996) Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles. J Cell Biol 133(4):831–842

    Article  CAS  PubMed  Google Scholar 

  • Veland IR, Awan A, Pedersen LB, Yoder BK, Christensen ST (2009) Primary cilia and signaling pathways in mammalian development, health and disease. Nephron Physiol 111(3):39–53

    Article  Google Scholar 

  • Yoshioka H, Meno C, Koshiba K, Sugihara M, Itoh H, Ishimaru Y, Inoue T, Ohuchi H, Semina EV, Murray JC, Hamada H, Noji S (1998) Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left–right asymmetry. Cell 94(3):299–305

    Article  CAS  PubMed  Google Scholar 

  • Yost HJ (1999) Diverse initiation in a conserved left–right pathway? Curr Opin Genet Dev 9(4):422–426

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate the help of Dr. Sarah E. Webb, The Hong Kong University of Science & Technology (HKUST), for helpful comments on this manuscript. This study was financially supported by a Grant from The National Science Foundation of China (No. 31372511) and The National High Technology Research and Development Program of China (No. 2012AA10A401).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan He or Jie Qi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 112 kb)

Supplementary Fig. 1

The DNAH9 protein sequence of the Japanese Flounder is aligned against those of nine other species. Homo sapiens ENST00000262442; Latimeria chalumnae ENSLACT00000019339; Gadus morhua ENSGMOT00000015923; Lepisosteus oculatus ENSLOCT00000015006; Oreochromis niloticus ENSONIT00000024597; Oryzias latipes ENSORLT00000020555; Takifugu rubripes ENSTRUT00000000142; Tetradon nigroviridis ENSTNIT00000008436; and Xiphorus maculates ENSXMAT00000011889. In the case of 100 % conservation in the ten sequences, then the amino acids are shaded in black. Four different symbols represent the four kinds of functional domains, including the P-loop domain, microtubule binding site, protein kinase C phosphorylation site, and the leucine zipper region. (TIFF 11013 kb)

Supplementary material 3 (TIFF 11012 kb)

Supplementary material 4 (TIFF 11012 kb)

Supplementary material 5 (TIFF 11010 kb)

Supplementary Fig. 2

Molecular phylogenetic analysis of DNAH9. The tree was constructed by MEGA (version 5.1) using Poisson Correction distance based upon the neighbor-joining method, with 1000 bootstrap replicates. Twenty other species with typical representation were chosen for comparison, including Tripneustes gratilla, Branchiostoma floridae, Gasterosteus aculeatu, and Xenopus tropicalis, and the GenBank accession numbers are shown after each species. Paralichthys olivaceus was clustered with Xiphophorus maculates. (TIFF 3278 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, J., Liu, C., Yang, F. et al. Characterization and genomic structure of Dnah9, and its roles in nodal signaling pathways in the Japanese flounder (Paralichthys olivaceus). Fish Physiol Biochem 42, 167–178 (2016). https://doi.org/10.1007/s10695-015-0127-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0127-9

Keywords

Navigation