Skip to main content
Log in

Sexually dimorphic expression and regulatory sequence of dnali1 in the olive flounder Paralichthys olivaceus

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Dynein axonemal light intermediate chain 1 (dnali1) is an important part of axonemal dyneins and plays an important role in the growth and development of animals. However, there is little information about dnali1 in fish. Herein, we cloned dnali1 gene from the genome of olive flounder (Paralichthys olivaceus), a commercially important maricultured fish in China, Japan, and Korea, and analyzed its expression patterns in different gender fish. The flounder dnali1 DNA sequence contained a 771 bp open reading frame (ORF), two different sizes of 5′ untranslated region (5′UTR), and a 1499 bp 3′ untranslated region (3′UTR). Two duplicated 922 nt fragments were found in dnali1 mRNA. The first fragment contained the downstream coding region and the front portion of 3′UTR, and the second fragment was entirely located in 3′UTR. Multiple alignments indicated that the flounder Dnali1 protein contained the putative conserved coiled-coil domain. Its expression showed sexually dimorphic with predominant expression in the flounder testis, and lower expression in other tissues. The gene with the longer 5′UTR was specifically expressed in the testis. The highest expression level in the testis was detected at stages IV and V. Transient expression analysis showed that the 922 bp repeated sequence 3′UTR of dnali1 down-regulated the expression of GFP at the early stage in zebrafish. The flounder dnali1 might play an important role in the testis, especially in the period of spermatogenesis, and the 5′UTR and the repetitive sequences in 3′UTR might contain some regulatory elements for the cilia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

dnali1 :

Dynein axonemal light intermediate chain 1

ORF:

Open reading frame

5′UTR:

5′ Untranslated region

3′UTR:

3′ Untranslated region

TL:

Total length; MS222, tricaine methane sulfonate

HE:

Hematoxylin/eosin

RT-PCR:

Reverse transcription polymerase chain reaction

RACE:

Rapid amplification of cDNA ends

qPCR:

Real-time quantitative polymerase chain reaction

IDA:

Inner dynein arms

ODA:

Outer dynein arms

References

  1. Paschal BM, Vallee RB (1987) Retrograde transport by the microtubule-associated protein MAP 1C. Nature 330:181–183. https://doi.org/10.1038/330181a0

    Article  CAS  PubMed  Google Scholar 

  2. Holzbaur ELF, Vallee RB (1994) Dyneins: molecular structure and cellular fnction. Genet Mol Res 10:339–372. https://doi.org/10.1146/annurev.cb.10.110194.002011

    Article  CAS  Google Scholar 

  3. Cypranowska C, Yildiz A, Ishikawa T (2016) Dyneins. In: Cypranowska CA, Yildiz A, Ishikawa T (eds) Encyclopedia of Cell Biology. Elsevier, Amsterdam, pp 620–636

    Chapter  Google Scholar 

  4. King SM (2000) AAA domains and organization of the dynein motor unit. J Cell Sci 113(Pt 14):2521–2526. https://doi.org/10.2307/3583618

    Article  CAS  PubMed  Google Scholar 

  5. Yamaguchi H, Oda T, Kikkawa M, Takeda H (2018) Systematic studies of all PIH proteins in zebrafish reveal their distinct roles in axonemal dynein assembly. Elife. https://doi.org/10.7554/eLife.36979

    Article  PubMed  PubMed Central  Google Scholar 

  6. Leventea E, Hazime K, Zhao C, Malicki J (2016) Chapter 9 - Analysis of cilia structure and function in zebrafish. In: Detrich HW, Westerfield M, Zon LI (eds) Methods in Cell Biology. Academic Press, Cambridge, pp 179–227

    Google Scholar 

  7. Subramanian A, Kabi A, Gray SF, Pennock D (2016) p28 dynein light chains and ciliary motility in Tetrahymena thermophila. Cytoskeleton 73:197–208. https://doi.org/10.1002/cm.21295

    Article  CAS  PubMed  Google Scholar 

  8. LeDizet M, Piperno G (1995) The light chain p28 associates with a subset of inner dynein arm heavy chains in Chlamydomonas axonemes. Mol Biol Cell 6:697–711. https://doi.org/10.1091/mbc.6.6.697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  Google Scholar 

  10. Zariwala MA, Gee HY, Kurkowiak M, Al-Mutairi DA, Leigh MW, Hurd TW, Hjeij R, Dell SD, Chaki M, Dougherty GW et al (2013) ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am J Hum Genet 93:336–345. https://doi.org/10.1016/j.ajhg.2013.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Babushok DV, Ostertag EM, Kazazian HH (2007) Current topics in genome evolution: molecular mechanisms of new gene formation. Cell Mol Life Sci 64:542–554. https://doi.org/10.1007/s00018-006-6453-4

    Article  CAS  PubMed  Google Scholar 

  12. Letunic I, Copley RR, Bork P (2002) Common exon duplication in animals and its role in alternative splicing. Hum Mol Genet 11:1561–1567. https://doi.org/10.1093/hmg/11.13.1561

    Article  CAS  PubMed  Google Scholar 

  13. Arefeen A, Liu J, Xiao X, Jiang T, Berger B (2018) TAPAS: tool for alternative polyadenylation site analysis. Bioinformatics 34:2521–2529. https://doi.org/10.1093/bioinformatics/bty110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhong J, Peters AHFM, Kafer K, Braun RE (2001) A highly conserved sequence essential for translational repression of the protamine 1 messenger RNA in murine spermatids1. Biol Reprod 64:1784–1789. https://doi.org/10.1095/biolreprod64.6.1784

    Article  CAS  PubMed  Google Scholar 

  15. Zhong J, Peters AHFM, Lee K, Braun RE (1999) A double-stranded RNA binding protein required for activation of repressed messages in mammalian germ cells. Nat Genet 22:171–174. https://doi.org/10.1038/9684

    Article  CAS  PubMed  Google Scholar 

  16. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van DS, Inoue K, Enright AJ, Schier AF (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79. https://doi.org/10.1126/science.1122689

    Article  CAS  PubMed  Google Scholar 

  17. Sandler H, Stoecklin G (2008) Control mRNA decay by phosphorylation of tristetraprolin. Biochem Soc T 36:491–496. https://doi.org/10.1042/BST0360491

    Article  CAS  Google Scholar 

  18. Mishima Y, Tomari Y (2016) Codon usage and 3’ UTR length determine maternal mRNA stability in zebrafish. Mol Cell 61:874–885. https://doi.org/10.1016/j.molcel.2016.02.027

    Article  CAS  PubMed  Google Scholar 

  19. Fujiwara A, Fujiwara M, Nishida-Umehara C, Masaoka AS, T, (2007) Characterization of Japanese flounder karyotype by chromosome bandings and fluorescence in situ hybridization with DNA markers. Genetica 131:267–274. https://doi.org/10.1007/s10709-006-9136-z

    Article  PubMed  Google Scholar 

  20. Fan ZF, You F, Wang LJ, Weng SD, Wu ZH, Hu JW, Zou YX, Tan XG, Zhang PJ (2014) Gonadal transcriptome analysis of male and female olive flounder (Paralichthys olivaceus). Biomed Res Int 2014:291067. https://doi.org/10.1155/2014/291067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun P, You F, Zhang LJ, Wen AY, Wu ZH, Xu DD, Zhang PJ (2009) Histological evaluation of gonadal differentiation in olive flounder (Paralichthys olivaceus). Mar Sci 33:53–58. https://doi.org/10.1007/978-1-4020-9623-5_5

    Article  Google Scholar 

  22. Fornes O, Castro-Mondragon JA, Khan A, Lee RVD (2020) Mathelier A (2020) JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 48(D1):D87–D92. https://doi.org/10.1093/nar/gkz1001

    Article  CAS  PubMed  Google Scholar 

  23. Zheng WJ, Sun L (2011) Evaluation of housekeeping genes as references for quantitative real time RT-PCR analysis of gene expression in Japanese flounder (Paralichthys olivaceus). Fish Shellfish Immun 30:638–645. https://doi.org/10.1016/j.fsi.2010.12.014

    Article  CAS  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  25. Li MJ, Tan XG, Jiao S, Wang Q, Wu ZH, You F, Zou YX (2015) A new pattern of primordial germ cell migration in olive flounder (Paralichthys olivaceus) identified using nanos3. Dev Genes Evol 225:195–206. https://doi.org/10.1007/s00427-015-0503-6

    Article  CAS  PubMed  Google Scholar 

  26. Nagasaki H, Arita M, Nishizawa T, Suwa M, Gotoh O (2005) Species-specific variation of alternative splicing and transcriptional initation in six eukaryotes. Gene 364:53–62. https://doi.org/10.1016/j.gene.2005.07.027

    Article  CAS  PubMed  Google Scholar 

  27. Barrett LW, Fletcher S, Wilton SD (2012) Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci 69:3613–3634. https://doi.org/10.1007/s00018-012-0990-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hughes TA (2006) Regulation of gene expression by alternative untranslated regions. Trends Genet 22:119–122. https://doi.org/10.1016/j.tig.2006.01.001

    Article  CAS  PubMed  Google Scholar 

  29. Kiselak EA, Shen X, Song J, Gude DR, Wang J, Brody SL, Strauss JF, Zhang Z (2010) Transcriptional regulation of an axonemal central apparatus gene, sperm-associated antigen 6, by a SRY-related high mobility group transcription factor, S-SOX5. J Biol Chem 285:30496–30505. https://doi.org/10.1074/jbc.M110.121590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. She ZY, Yang WX (2017) Nucleocytoplasmic shuttling of SOX14A and SOX14B transcription factors. Oncotarget 8(29):46955–46968

    Article  Google Scholar 

  31. Gritsun TS, Gould EA (2006) The 3’ untranslated region of tick-borne flaviviruses originated by the duplication of long repeat sequences within the open reading frame. Virology 354:217–223. https://doi.org/10.1016/j.virol.2006.03.052

    Article  CAS  PubMed  Google Scholar 

  32. Vallente R, Eichler E (2002) OPINION Segmental duplications and the evolution of the primate genome. Nat Rev Genet 3:65–72. https://doi.org/10.1038/nrg705

    Article  CAS  Google Scholar 

  33. Peng T, Li Y (2009) Tandem exon duplication tends to propagate rather than to create de novo alternative splicing. Biochem Biophys Res Commun 383:163–166. https://doi.org/10.1016/j.bbrc.2009.03.162

    Article  CAS  PubMed  Google Scholar 

  34. Moore AD, Bjorklund AK, Ekman D, Bornberg-Bauer E, Elofsson A (2008) Arrangements in the modular evolution of proteins. Trends Biochem Sci 33:444–451. https://doi.org/10.1016/j.tibs.2008.05.008

    Article  CAS  PubMed  Google Scholar 

  35. Trump N, Cullup T, Verheij JB, Manzur A, Muntoni F, Abbs S, Jungbluth H (2012) X-linked myotubular myopathy due to a complex rearrangement involving a duplication of MTM1 exon 10. Neuromuscul Disord 22:384–388. https://doi.org/10.1016/j.nmd.2011.11.004

    Article  CAS  PubMed  Google Scholar 

  36. Rashid S, Breckle R, Hupe M, Geisler S, Doerwald N, Neesen J (2006) The murine Dnali1 gene encodes a flagellar protein that interacts with the cytoplasmic dynein heavy chain 1. Mol Reprod Dev 73:784–794. https://doi.org/10.1002/mrd.20475

    Article  CAS  PubMed  Google Scholar 

  37. Inaba A, Furuhata M, Morimoto K, Rahman M, Takahashi O, Hijikata M, Knowles MR, Keicho N (2019) Primary ciliary dyskinesia in Japan: systematic review and meta-analysis. BMC Pulm Med 19:135. https://doi.org/10.1186/s12890-019-0897-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kumar K, Taylor WE, Shen R, Stefan A, Matthew G, Fisher CE, Coucke PJ, Peter VH, Guy VC, Shalender B (1997) Complementary deoxyribonucleic acid cloning and characterization of a putative human axonemal dynein light chain gene 1. J Clin Endocr Metab 82:3047–3053. https://doi.org/10.1210/jcem.82.9.4242

    Article  Google Scholar 

  39. Liu ZB, Tu HQ, Kang YS, Xue YY, Ma DY, Zhao CT, Li HY, Wang L, Liu F (2019) Primary cilia regulate hematopoietic stem and progenitor cell specification through Notch signaling in zebrafish. Nat Commun 10:1839. https://doi.org/10.1038/s41467-019-09403-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kobayashi D, Asano-Hoshino A, Nakakura T, Nishimaki T, Ansai S, Kinoshita M, Ogawa M, Hagiwara H, Yokoyama T (2017) Loss of zinc finger MYND-type containing 10 (zmynd10) affects cilia integrity and axonemal localization of dynein arms, resulting in ciliary dysmotility, polycystic kidney and scoliosis in medaka (Oryzias latipes). Dev Biol 430:69–79. https://doi.org/10.1016/j.ydbio.2017.08.016

    Article  CAS  PubMed  Google Scholar 

  41. Kamiya R, Kurimoto E, Muto E (1991) Two types of Chlamydomonas flagellar mutants missing different components of inner-arm dynein. J Cell Biol 112:441–447. https://doi.org/10.1083/jcb.112.3.441

    Article  CAS  PubMed  Google Scholar 

  42. Sun JJ, Wu ZH, Zhong T (2016) Cilia function in cell signaling and organ development. Sci Sin Vitae 46:354–362. https://doi.org/10.1360/N052016-00134

    Article  Google Scholar 

  43. Samsa LA, Givens C, Tzima E, Stainier DY, Qian L, Liu J (2015) Cardiac contraction activates endocardial Notch signaling to modulate chamber maturation in zebrafish. Development 142:4080–4091. https://doi.org/10.1242/dev.125724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mayr C (2019) What are 3’ UTRs doing? Cold spring harb perspect Biol. https://doi.org/10.1101/cshperspect.a034728

    Article  PubMed  Google Scholar 

  45. Yazawa R, Hirono I, Aoki T (2005) Characterization of promoter activities of four different Japanese flounder promoters in transgenic zebrafish. Mar Biotechnol (NY) 7:625–633. https://doi.org/10.1007/s10126-005-0011-1

    Article  CAS  Google Scholar 

  46. Yazawa R, Hirono I, Aoki T (2006) Transgenic zebrafish expressing chicken lysozyme show resistance against Bacterial Diseases. Transgenic Res 15:385–391. https://doi.org/10.1007/s11248-006-0009-0

    Article  CAS  PubMed  Google Scholar 

  47. Kim B, Kim HM, Kang MK, Sohn DH, Han SJ (2020) 5’-UTR and ORF elements, as well as the 3’-UTR regulate the translation of Cyclin. Biochem Biophys Res Commun 527:968–973. https://doi.org/10.1016/j.bbrc.2020.04.151

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the projects from the National Sciences of Foundation of China (Nos. 31772834, 31672636, and 31702337), and the National Key R&D Program of China (No. 2018YFD0900202) and Key Technology Research and Development Program of Shandong (CN) (No. 2018YFD0901202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xungang Tan or Feng You.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests.

Ethical approval

The studies were conducted in accordance with the Institutional Animal Care and Use Committee of the Institute of Oceanology, Chinese Academy of Sciences. All of applicable international, national, and institutional guidelines for the care and use of animals were followed by the authors.

Consent to participate

All the authors listed have approved the manuscript that is enclosed.

Consent for publication

The manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 15 kb)

11033_2021_6342_MOESM2_ESM.tif

Developmental stages of the flounder gonads. The stages were determined using histological section with HE staining (tif 21396 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Tan, X., Zou, C. et al. Sexually dimorphic expression and regulatory sequence of dnali1 in the olive flounder Paralichthys olivaceus. Mol Biol Rep 48, 3529–3540 (2021). https://doi.org/10.1007/s11033-021-06342-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06342-9

Keywords

Navigation