Skip to main content
Log in

Effect of azadirachtin on haematological and biochemical parameters of Argulus-infested goldfish Carassius auratus (Linn. 1758)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Argulosis hampers aquaculture production and alters the host physiology and growth. Azadirachtin is recognized as a potential antiparasitic agent against Argulus sp. The present study aimed to investigate the effect of different concentration of azadirachtin solution on haematological and serum biochemical parameters of Argulus-infested goldfish Carassius auratus. Ninety Argulus-infested goldfish were randomly divided into six equal groups. Fish of group 1–5 were treated with azadirachtin solution through bath of 1, 5, 10, 15 and 20 mg L−1 as T1, T2, T3, T4 and T5, respectively, and group 6 was exposed to 2 % DMSO solution without azadirachtin and considered as negative control T0. Along with six treatment groups, a positive control T0+ of healthy goldfish free from Argulus infestation was also maintained. Parasitic mortality was evaluated after 3 days of consecutive bath treatment. After 7 days of post-treatment, the blood and serum were drawn from each of the treatment groups and haematological and serum biochemical parameters were evaluated. Total leucocyte count (TLC), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), blood glucose, total protein (TP), globulin, serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) were significantly (p < 0.05) high in negative control group when compared with positive control group. It could be concluded that Argulus infestation altered marked haematological and serum biochemical parameters. However, in treated groups complete elimination of Argulus was found in T4 and T5 groups. Also significant (p < 0.05) reduction in haematological and serum biochemical parameters of all the treatment groups were recorded in comparison with negative control group. In addition, T4 and T5 groups showed significantly (p < 0.05) high superoxide dismutase (SOD), catalase, total erythrocyte count (TEC) and haemoglobin (Hb). However, higher mean corpuscular haemoglobin concentration (MCHC), blood glucose and lactate dehydrogenase (LDH) levels in T5 group revealed that higher concentration of azadirachtin have notable effects on activity of vital tissues function and physiology of the host. Argulus spp. from infested goldfish could be eliminated using bath treatment with solution of azadirachtin having concentration of 15 mg L−1 and that also shifted haematological and serum biochemical parameters towards homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Almeida JS, Meletti PC, Martinez CBR (2005) Acute effects of sediments taken from an urban stream on physiological and biochemical parameters of the neotropical fish Prochilodus lineatus. Comp Biochem Physiol 140:356–363

    Google Scholar 

  • Anderson DP, Robertson BS, Dixon OW (1979) Plaque-forming cells and humoral antibody in rainbow trout (Salmo gairdneri) induced by immersion in a Yersinia ruckeri O-antigen preparation. J Fish Res Board Can 36(6):636–639

    Article  Google Scholar 

  • Anderson DP, Siwicki AK (1995) Basic haematology and serology for fish health programmes. In: Shariff M, Arthur JR, Subasinghe RP (eds) Diseases in Asian Aquaculture II. Fish Health section, Asian Fisheries society, Manila, Philippines, pp 185–202

  • Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U (2002) Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci 82:1336–1345

    CAS  Google Scholar 

  • Buchmann K, Jensen PB, Kruse KD (2003) Effects of sodium percarbonate and garlic extract on Ichthyophthirius multifiliis theronts and tomocysts: in vitro experiments. N Am J Aquac 65:21–24

    Article  Google Scholar 

  • Chatterjee N (2003) Biochemical, immunological and molecular probes in stress with application of an antistress formulation on genetically different finfish. Ph.d. thesis submitted to CIFE, Mumbai

  • Chaves IS, Luvizzotto-Santos R, Sampaio LAN, Bianchini A, Martinez PE (2006) Immune adaptive response induced by Bicotylophora trachinoti (Monogenea: Diclidophoridae) infestation in pompano Trachinotus marginatus (perciformes: Carangidae). Fish Shellfish Immunol 21:242–250

    Article  CAS  PubMed  Google Scholar 

  • Cuesta A, Munoz P, Rodriguez A, Salinas I, Sitja-Bobadilla A, Alvarez-Pellitero P, Esteban MA, Meseguer J (2006) Gilthead seabream (Sparus auratus L.) innate defence against the parasite Enteromyxum leei (Myxozoa). Parasitol 132:95–104

    CAS  Google Scholar 

  • Dalmo RA, Ingebrightsen K, Bogwald J (1997) Non-specific defense mechanisms in fish, with particular reference to the reticuloendothelial system (RES). J Fish Dis 20:241–273

    Article  CAS  Google Scholar 

  • Dorval J, Leblond VS, Hontela A (2003) Oxidative stress and loss of cortisol secretion in adrenocortical cells of rainbow trout (Oncorhynchus mykiss) exposed in vitro to endosulfan, an organochloride pesticide. Aquat Toxicol 63:229–241

    Article  CAS  PubMed  Google Scholar 

  • Doumas BT, Watson W, Biggs HG (1971) Albumin standards and the measurement of serum albumin with bromocresol green. Gun Chim Acta 31:87

    Article  CAS  Google Scholar 

  • Ekanem AP, Obiekezie A, Kloas W, Knopf K (2004) Effects of crude extracts of Mucuna pruriens (Fabaceae) and Carica papaya (Caricaceae) against the protozoan fish parasite Ichthyophthirius multifiliis. Parasitol Res 92:361–366

    Article  CAS  PubMed  Google Scholar 

  • Ellis AE (1990) Immunity to bacteria in fish. Fish Shellfish Immunol 9(4):291–308

    Article  Google Scholar 

  • Fletcher TC (1973) Defence mechanisms in fish. In: Malins DC, Sargent JR (eds) Biochemical and Biophysical perspectives in marine biology. Academic press, London, pp 189–222

    Google Scholar 

  • Foott JS, Harmon R, Stone R (2004) Effect of water temperature on non-specific immune function and ceratomyxosis in juvenile Chinook salmon and steel head from the Klamath River. Calif Fish game 90:71–84

    Google Scholar 

  • Gopalakrishnan V (1964) Recent developments in the prevention and control of parasites of fishes cultured in Indian waters. Proc Zool Soc Bengal 17:95–100

    Google Scholar 

  • Goven B, Gilbert J, Gratzek J (1980) Apparent drug resistance to the organophosphate dimethyl (2,2,2-trichloro-1-hydroxyethyl) phosphonate by monogenetic trematodes. J Wildl Dis 16(3):343–346

    CAS  PubMed  Google Scholar 

  • Govindachari TR, Gopalkrishnan GJ (1998) Insect antifeedant and growth regulating activities of neem seed oil. Indian Chem Soc 75:655

    CAS  Google Scholar 

  • Grigo F (1975) How much is carp (C. carpio) stressed by temperature? Blood composition, with a special look at the serum sletrolytes. Zool Anz Fena 8:215–330

    Google Scholar 

  • Haney DC, Hursh DA, Mix MC, Winton JR (1992) Physiological and hematological changes in chum salmon artificially infected with erythrocytic necrosis virus. J Aquat Anim Health 4:48–57

    Article  Google Scholar 

  • Hardie LJ, Ellis AE, Secombes CJ (1996) In vitro activation of rainbow trout macrophages stimulates inhibition of Renibacterium salmoninarum growth concomitant with augmented generation of respiratory burst products. Dis Aquat Org 25:175–183

    Article  Google Scholar 

  • Harikrishnan R, Rani MN, Balasundaram C (2003) Hematological and biochemical parameters in common carp, Cyprinus carpio, following herbal treatment for Aeromonas hydrophila infection. Aquaculture 221:41–50

    Article  Google Scholar 

  • Harikrishnan R, Balasundaram C, Kim MC, Kim JS, Han YJ, Heo MS (2009) Innate immune response and disease resistance in Carrasius auratus by triherbal solvent extracts. Fish Shellfish Immunol 27:508–515

    Article  CAS  PubMed  Google Scholar 

  • Harikrishnan R, Kim Ju-Sang, Kim Man-Chul, Balasundaram C (2012) Pomegranate enriched diet enhances the hematology, innate immune response, and disease resistance in Olive flounder against Philasterides dicentrarchi. Vet Parasitol. doi:10.1016/j.vetpar.2011.12.006

    PubMed  Google Scholar 

  • Iwama G, Nikanishi T (2004) The fish immune system, organism, pathogen and environment. Academic Press, New York

    Google Scholar 

  • Karagouni E, Athanassopoulou F, Tsagozis P, Ralli E, Moustakareas T, Lytra K, Dotsika E (2005) The impact of a successful anti-myxosporean treatment on the phagocyte functions of juvenile and adult Sparus aurata L. Int J Immunopathol Pharmacol 18:121–132

    CAS  PubMed  Google Scholar 

  • Klinger RE, Floyd RF (2002) Introduction of freshwater fish parasites. EDIS-Electronic Data Information Source-UF/IFAS Extension. University of Florida. http://edis.ifas.ufl.edu/FA033

  • Kumar S, Raman RP, Kumar K, Panday PK, Kumar N, Mohanty S, Kumar A (2012) In vitro and in vivo antiparasitic activity of Azadirachtin against Argulus spp. in Carassius auratus (Linn. 1758). Parasitol Res 110:1795–1800

    Article  PubMed  Google Scholar 

  • LaMarre E, Cochran PA (1992) Lack of host species selection by the exotic parasitic crustacean, Argulus japonicus. J Freshw Ecol 7:77–80

    Article  Google Scholar 

  • Lie O, Evensen O, Sarensen A, Fraysadal E (1989) Study on lysozyme activity in some fish species. Dis Aquat Org 6:1–5

    Article  CAS  Google Scholar 

  • Machala M, Petřivalský M, Nezveda K, Ulrich R, Dušek L, Piačka V, Svobodová Z (1997) Responses of carp hepatopancreatic 7-ethoxyresorufin-O-deethylase and glutathione-dependent enzymes to organic pollutants: a field study. Environ Toxicol Chem 16:1410–1416

    CAS  Google Scholar 

  • Madsen HCK, Buchmann K, Mellergaard S (2000) Treatment of trichodiniasis in eel (Anguilla anguilla) regarded in recirculation systems in Denmark: alternatives to formaldehyde. Aquaculture 186:221–231

    Article  CAS  Google Scholar 

  • Manush SM, Pal AK, Das T, Mukherjee SC (2005) Dietary high protein & vitamin C influences in mitigating stress due to chelate claw ablation in Macrobrachium rosenbergii males. Comp Biochem Physiol 142A:10–18

    CAS  Google Scholar 

  • Martinez CBR, Souza MM (2002) Acute effects of nitrite on ion regulation in two neotropical fish species. Comp Biochem Physiol A 133:151–160

    Article  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  PubMed  Google Scholar 

  • Monteiro DA, Almeida JA, Rantin FT, Kalinin AL (2006) Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). Comp Biochem Physio 143C:141–149

    CAS  Google Scholar 

  • Munoz P, Sitja-Bobadilla A, Alvarez-Pellitero P (2000) Cellular and humoral immune response of European sea bass (Dicentrarchus labrax L.) (Teleostei: Serranidae) immunized with Sphaerospora dicentrarchi (Myxosporea: Bivalvulida). Parasitology 120:465–477

    Article  CAS  PubMed  Google Scholar 

  • Mustafa A, Mac Williams C, Fernadez N, Matchett K, Conboy GA, Burka JF (2000) Effects of sea lice (Lepeophtherius salmonis Kroyer, 1837) infestation on macrophage function in Atlantic salmon (Salmo salar L.). Fish Shellfish Immunol 10:47–59

    Article  CAS  PubMed  Google Scholar 

  • Nelson NA, Somogyi M (1945) Cited by Oser BL, 1965. In: Hawk’s physiological chemistry, 14th edn. McGraw Hill Publication, New York, pp 113

  • Omoregie E, Okpanachi MA (1992) Growth of Tilapia zilli exposed to sublethal concentrations of crude extracts of Azadirachta indica. Acta Hydrobiol 34:281–286

    Google Scholar 

  • Omoregie E, Okpanachi MA (1997) Acute toxicity of water extracts of bark of the Neem plant, Azadirachta indica (Lodd) to the cichlid Tilapia zilli (Gervais). Acta Hydrobiol 39:47–51

    Google Scholar 

  • Pandey S, Parvez S, Sayeed I, Haque R, Bin-Hafeez B, Raisuddin S (2003) Biomarkers of oxidative stress: a comparative study of river Yamuna fish Wallago attu (Bl. and Schn.). Sci Total Environ 309:105–111

    Article  CAS  PubMed  Google Scholar 

  • Parry RM, Chandau RC, Shahani RM (1965) A rapid and sensitive assay of muramidase. Proc Soc Exp Biol Med 119:384–386

    Article  CAS  PubMed  Google Scholar 

  • Pickering AD (1981) Introduction: the concept of biological stress. In: Pickering AD (ed) Stress and fish. Academic Press, London

    Google Scholar 

  • Quade MJ, Roth JA (1997) A rapid, direct assay to measure degranulation of bovine neutrophils primary granules. Vet Immunol Immunopathol 58:239–248

    Article  CAS  PubMed  Google Scholar 

  • Rábago-Castro JL, Sanchez JG, Pérez-Castañeda R, Gonzálea-González A (2006) Effects of the prophylatic use of Romet®-30 and copper sulphate on growth, condition and feeding indices in Channel catfish (Ictalurus punctatus). Aquaculture 253:343–349

    Article  Google Scholar 

  • Rahman MM (1996) Effects of a freshwater fish parasite, Argulus foliaceus Linn. infection on common carp, Cyprinus carpio (Linn.). Bangladesh J Zool 24:57–63

    Google Scholar 

  • Rao YV, Das BK, Pradhan J, Chakraborti R (2006) Effect of Achyranthes aspera on the immunity and survival of Labeo rohita infected with Aeromonas hydrophila. Fish Shellfish Immunol 20:263–273

    Article  Google Scholar 

  • Reinhold JG (1953) Standard methods of clinical chemistry 1:88

  • Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic transaminases. Am J Clin Pathol 28:56–63

    CAS  PubMed  Google Scholar 

  • Ruane NM, Nolan DT, Rotlant J, Costellone J, Wendellar Bonga SE (2000) Experimental exposure of rainbow trout O. mykiss (Walbaum) to the infective stages of the sea louce Lepcoptheirus salmonia (Kroyer) influences the physiological response to an acute stressor. Fish Shellfish Immunol 10:451–463

    Article  CAS  PubMed  Google Scholar 

  • Rushton-Mellor SK (1992) Discovery of the fish louse, Argulus japonicus Thiele (Crustacea: Branchiura). Britain Aquac Fish Manag 23:269–271

    Google Scholar 

  • Sahoo PK, Mukherjee SC, Ayyappan S (2005) Concept of immunostimulation in finfish and shellfish. Workshop on Aquaculture Medicine, Natl 71

    Google Scholar 

  • Sahoo PK, Saurabh S (2008) immune response to parasitic pathogens in fish. Course manual, Winter school on recent advances in fish and shellfish immunology and its application, CIFA, Bhubaneswar, India, pp 70–74

  • Saurabh S, Sahoo PK (2010) Non-specific immune responses of the Indian major carp Labeo rohita (Hamilton) to infestation by the freshwater fish louse Argulus siamensis (Wilson). Indian J Fish 57:45–53

    Google Scholar 

  • Schaperclaus W, Kulow H, Schreckenbach K (1991) Haematological and serological technique. In: Kothekar VS (ed) Fish disease, vol 1, 2nd edn. Oxonian Press, New Delhi, pp 71–108

    Google Scholar 

  • Schlüter U (1987) In Schmutterer H, Ascher KRS (eds) Natural pesticides from the neem tree and other tropical plants. GTZ Press, Eschborn, pp 331–348

  • Schmahl G, Mehlhorn H (1985) Treatment of fish parasites. 1. Praziquantel effective against Monogenea (Dactylogyrus vastator, Dactylogyrus extensus, Diplozoon paradoxum). Z Parasitenk 71:727–737

    Article  CAS  PubMed  Google Scholar 

  • Secombes CJ (1996) The non-specific immune system. In: Iwama G, Nakanishi T (eds) The fish immune system: organism, pathogens and environment. Academic press, San Diego, pp 63–103

    Google Scholar 

  • Sheila F, Sivakumar AA, Chandran R (2002) Infestation and prevalence of copepod parasite, Argulus indicus on some freshwater fishes. Nat Environ Pollut Technol 1:201–206

    Google Scholar 

  • Shimura S, Inoue K, Kasai K, Saito H (1983) Studies on effects of parasitism of Argulus coregon (Crustaces: Branchiura) on Furunculosis) of Oncorhynchus masou (Salmonidae). Fish Pathol Tokyo 18:37–40

    Article  Google Scholar 

  • Sies H (1996) Biochemistry of oxidative stress. Agew Chem Int Ed 25:1058–1071

    Article  Google Scholar 

  • Singhal RN, Jeet S, Davies RW (1990) The effects of argulosis–saprolegniasis on the growth and production of Cyprinus carpio. Hydrobiologia 202:27–31

    Google Scholar 

  • Sitja-Bobadilla A, Redondo MJ, Bermudez R, Palenzuela O, Ferreiro I, Riaza A, Quiroga I, Nieto JM, Alvarez-Pellitero P (2006) Innate and adaptive immune responses of turbot, Scophthalmus maximus (L.), following experimental infection with Enteromyxum scophthalmi (Myxosporea: Myxozoa). Fish Shellfish Immunol 21:485–500

    Article  CAS  PubMed  Google Scholar 

  • Takahara S, Hamilton BH, Nell JV, Kobra TY, Oguna Y, Nishimura ET (1960) Hypocatalesemia a new genesis carrier state. J Clin Investig 29:610–619

    Article  Google Scholar 

  • Tavares-Dias M, Martins ML, Kronka SN (1999) Evaluation of the haematological parameters in Piaractus mesopotamicus Holmberg (Osteichthyes, Characidae) with Argulus sp (Crustacea: Branchiura) infestation and treatment with organophosphate. Rev Bras Zool 16(2):553–555

    Google Scholar 

  • Tjalkens RB, Valerio LG Jr, Awasthi YC, Petersen DR (1998) Association of Glutathione S transferase isoenzyme-specific induction and lipid peroxidation in two inbred strains of mice subjected to chronic dietary iron overload. Toxicol Appli pharmacol 151:174–181

    Article  CAS  Google Scholar 

  • Toovey JPG, Lyndon AR (2000) Effects of hydrogen peroxide, dichlorvos and cypermethrin on subsequent fecundity of sea lice, Lepeophtheirus salmonis, under fish farm conditions. Bull Eur Ass Fish Pathol 20:224

    Google Scholar 

  • Tort L, Torres P, Hidalgo J (1988) The effects of sublethal concentrations cadmium on haematological parameters in the dogfish Scyliorhinus canicula. J Fish Biol 32:277–282

    Article  CAS  Google Scholar 

  • Tort L, Balasch JC, Mackenzie S (2003) Fish immune system. A cross roads between innate and adaptive responses. Imunología 3:277–286

    Google Scholar 

  • Treves-Brown KM (1999) Availability of medicines for fish. Fish Vet J 4:40–55

    Google Scholar 

  • Valdimrov VL (1968) Immunity of fish. Bull Off Int Epizoot 69:1365–1372

    Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  PubMed  Google Scholar 

  • Vijayaraghaban S, Rao JVR (1986) Starvational stress effects on tissue lactate and lactate dehydrogenase activity in Anabas scandens (cuvier). Comp Physiol Ecol 11(4):233–236

    Google Scholar 

  • Walker PD, Flik G, Bonga SEW (2004) The biology of parasites from the genus Argulus and a review of the interactions with its host. In: Wiegertjes GF, Flik G (eds) Host-parasite interactions, GARLAND Science/BIOS Science Publications, pp 107–129

  • Wang GX, Wang JF, Yuan JL, Shen YH, Zheng W, Li L (2010) Activity of sanguinarine from Macleaya cordata to Dactylogyrus and six pathogenic bacteria in aquaculture. Acta Bot Boreal Occident Sin 27:1650–1655

    Google Scholar 

  • Wepener V, Van Vuren JHJ, Du Preez HH (1992) The effect of hexavalent chromium at different pH values on the haematology of Tilapia sparmani (Chichlidae). Comp Biochem Physiol 101:375–381

    Article  CAS  Google Scholar 

  • Wiegertjes GF, Stet RJM, Parmeatier HK, Van Muiswinkel WB (1996) Immunogenetics of disease resistance in fish; a comparable approach developmental and comparative Immunology. J Exp Boil 20:365–381

    CAS  Google Scholar 

  • Winkaler EU, Santos TRM, Machado-Neto JG, Martinez CBR (2007) Acute lethal and sublethal effects of neem leaf extracts on the neotropical freshwater fish Prochilodus lineatus. Comp Biochem Physiol 145:236–244

    Google Scholar 

  • Wright PA, Perry SF, Moon TW (1989) Regulation of hepatic gluconeogensis and glycogenolysis by catecholamines in rainbow trout during environmental hypoxia. J Exp Biol 147:169–188

    CAS  PubMed  Google Scholar 

  • Wroblewski F, La Due JS (1955) Lactate dehydrogenase activity in blood. Proc Soc Exp Boil Med 90:210–213

    Article  CAS  Google Scholar 

  • Wu G, Yuan C, Shen M, Tang J, Gong Y, Li D, Sun F, Huang C, Han X (2007) Immunological and biochemical parameters in carp (Cyprinus carpio) after Qompsell feed ingredients for long-term administration. Aquac Res 38(3):246–255

    Article  CAS  Google Scholar 

  • Yao J-y, Li X, Shen J, Pan X-y, Hao G, Xu Y, Ying W, Ru H, Liu X-l (2011) Isolation of bioactive components from Chelidonium majus L. with activity against Trichodina sp. Aquaculture 318:235–238

    Article  CAS  Google Scholar 

  • Zhang YS, Andersson T, Förlin L (1990) Induction of hepatic xenobiotic biotransformation enzymes in rainbow trout by β-naphthoflavone. Timecourse studies. Comp Biochem Physiol B 95:24–253

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr. W.S. Lakra, Director and Vice chancellor, Central Institute of Fisheries Education, Mumbai, India for providing all the facilities required to carry out the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurav Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1222 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Raman, R.P., Kumar, K. et al. Effect of azadirachtin on haematological and biochemical parameters of Argulus-infested goldfish Carassius auratus (Linn. 1758). Fish Physiol Biochem 39, 733–747 (2013). https://doi.org/10.1007/s10695-012-9736-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-012-9736-8

Keywords

Navigation