Skip to main content
Log in

Effect of body size on organ-specific mitochondrial respiration rate of the largemouth bronze gudgeon

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The effects of body size on the mitochondrial respiration rate were assessed in the heart, brain, gill, liver, and red muscle of largemouth bronze gudgeon, Coreius guichenoti, from the Yangtze River. Body mass had a significant influence on the state 3 oxygen consumption rate of the mitochondria from the heart, gill, and red muscle. The relationships between body mass (M, g) and state 3 oxygen consumption rate (V state 3, nmol O min−1 mg−1) of the mitochondria were represented by the following: V state 3 = 3.56M 0.71 for heart, V state 3 = 4.64M 0.50 for red muscle, and V state 3 = 473.73M −0.82 for gill. There was a significant difference in V state 3 , V state 4, and respiratory control ratio among organs and all were highest in the heart. Our results suggest that the relationship between mitochondrial respiratory rate and body size varies among organs. The high mitochondrial respiratory rate in the heart of the largemouth gudgeon suggests that it has the highest oxidative capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Battersby BJ, Moyes CD (1998) Are there distinct subcellular populations of mitochondria in rainbow trout red muscle? J Exp Biol 201:2455–2460

    PubMed  Google Scholar 

  • Berner NJ (1999) Oxygen consumption by mitochondria from an endotherm and an ectotherm. Comp Biochem Physiol B 124:25–31

    Article  PubMed  CAS  Google Scholar 

  • Bishop CM (1999) The maximum oxygen consumption and aerobic scope of birds and mammals: getting to the heart of the matter. Proc R Soc Lond B 266:2275–2281

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Burness GP, Leary SC, Hochachka PW, Moyes CD (1999) Allometric scaling of RNA, DNA, and enzyme levels: an intraspecific study. Am J Physiol Regul Integr Comp Physiol 277:R1164–R1170

    CAS  Google Scholar 

  • Burpee JL, Bardsley EL, Dillaman RM, Watanabe WO, Kinsey ST (2010) Scaling with body mass of mitochondrial respiration from the white muscle of three phylogenetically, morphologically and behaviorally disparate teleost fishes. J Comp Physiol B 180:967–977

    Article  PubMed  CAS  Google Scholar 

  • Català-Niell A, Elena EM, Ana PM, Gianotti M, Lladó I (2008) Skeletal muscle and liver oxidative metabolism in response to a voluntary isocaloric intake of a high fat diet in male and female rats. Cell Physiol Biochem 22:327–336

    Article  PubMed  Google Scholar 

  • Ding RH (1994) The fishes of Sichuan. Sichuan Publishing House of Science and Technology, Chengdu, pp 238–240

    Google Scholar 

  • Duerr JM, Podrabsky JE (2010) Mitochondrial physiology of diapausing and developing embryos of the annual killifish Austrofundulus limnaeus: implications for extreme anoxia tolerance. J Comp Physiol B 180:991–1003

    Article  PubMed  Google Scholar 

  • Duong CA, Sepulveda CA, Graham JB, Dickson KA (2006) Mitochondrial proton leak rates in the slow, oxidative myotomal muscle and liver of the endothermic shortfin mako shark (Isurus oxyrinchus) and the ectothermic blue shark (Prionace glauca) and leopard shark (Triakis semifasciata). J Exp Biol 209:2678–2685

    Article  PubMed  CAS  Google Scholar 

  • Else PL, Brand MD, Turner N, Hulbert AJ (2004) Respiration rate of hepatocytes varies with body mass in birds. J Exp Biol 207:2305–2311

    Article  PubMed  Google Scholar 

  • Erecinska M, Silver IA (1989) ATP and brain function. J Cereb Blood Flow Metab 9:2–19

    Article  PubMed  CAS  Google Scholar 

  • Fangue NA, Richards JG, Schulte PM (2009) Do mitochondrial properties explain intraspecific variation in thermal tolerance? J Exp Biol 212:514–522

    Article  PubMed  CAS  Google Scholar 

  • Guderley H, Johnston IA (1996) Plasticity of fish muscle mitochondria with thermal acclimation. J Exp Biol 199:1311–1317

    PubMed  CAS  Google Scholar 

  • Hochachka PW, Darveau CA, Andrews RD, Suarez RK (2003) Allometric cascade: a model for resolving body mass effects on metabolism. Comp Biochem Physiol A 134:675–691

    Article  Google Scholar 

  • Hoppeler H, Weibel ER (2000) Structural and functional limits for oxygen supply to muscle. Acta Physiol Scand 168:445–456

    Article  PubMed  CAS  Google Scholar 

  • Hoppeler H, Lindstedt SL, Claassew H, Taylor CR, Mathieu O, Weibel ER (1984) Scaling mitochondrial volume in the heart to body mass. Resp Physiol 55:131–137

    Article  CAS  Google Scholar 

  • Hulbert AJ, Else PL (2000) Mechanisms underlying the cost of living in animals. Annu Rev Physiol 62:207–235

    Article  PubMed  CAS  Google Scholar 

  • Johnson IA, Calvo J, Guderly H, Fernandez D, Palmer L (1998) Latitudinal variation in the abundance and oxidative capacities of muscle mitochondria in perciform fishes. J Exp Biol 201:1–12

    Google Scholar 

  • Kraffe E, Marty Y, Guderley H (2007) Changes in mitochondrial oxidative capacities during thermal acclimation of rainbow trout Oncorhynchus mykiss: roles of membrane proteins, phospholipids and their fatty acid compositions. J Exp Biol 210:149–165

    Article  PubMed  CAS  Google Scholar 

  • Kristían T, Hopkins IB, McKenna MC, Fiskum G (2006) Isolation of mitochondria with high respiratory control from primary cultures of neurons and astrocytes using nitrogen cavitation. J Neurosci Meth 152:136–143

    Article  Google Scholar 

  • Lannig G, Storch D, Pörtner HO (2005) Aerobic mitochondrial capacities in Antarctic and temperate eelpout (Zoarcidae) subjected to warm versus cold acclimation. Polar Biol 28:575–584

    Article  Google Scholar 

  • Leary SC, Battersby BJ, Moyes CD (1998) Inter-tissue differences in mitochondrial enzyme activity, RNA and DNA in rainbow trout (Onorhynchus mykiss). J Exp Biol 201:3377–3384

    PubMed  CAS  Google Scholar 

  • Liao X, Yu X, Chang J, Tong J (2007) Polymorphic microsatellites in largemouth bronze gudgeon (Coreius guichenoti) developed from repeat-enriched libraries and cross-species amplifications. Mol Ecol Notes 7:1104–1107

    Article  CAS  Google Scholar 

  • Liu L, Wu G, Wang Z (1990) Reproduction ecology of Coreius heterodon (Bleeker) and Coreius guichenoti (Sauvage et Dabry) in the mainstream of the Changjiang River after the construction of Gezhouba Dam. Acta Hydrobiol Sin 14:205–215

    Google Scholar 

  • Luo YP, Wang QQ (2012) Effect of body size and temperature on the resting metabolic rate of juvenile largemouth bronze gudgeon. J Fish Biol 80:842–851

    Article  PubMed  CAS  Google Scholar 

  • Luo YP, Xie XJ (2008) Effects of temperature on the specific dynamic action of the southern catfish, Silurus meridionalis. Comp Biochem Physiol A 149:150–156

    Article  Google Scholar 

  • Moyes CD, Hood DA (2003) Origins and consequences of mitochondrial variation in vertebrate muscle. Annu Rev Physiol 65:177–201

    Article  PubMed  CAS  Google Scholar 

  • Moyes CD, Buck LT, Hochachka PW, Suarez RK (1989) Oxidative properties of carp red and white muscle. J Exp Biol 143:321–331

    PubMed  CAS  Google Scholar 

  • Moyes CD, Mathieu-Costello OA, Brill RW, Hochachka PW (1992) Mitochondrial metabolism of cardiac and skeletal muscles from a fast (Katsuwonuspelamis) and a slow (Cyprinus carpio) fish. Can J Zool 70:1246–1253

    Article  CAS  Google Scholar 

  • Myagkov NA (1991) The brain sizes of living elasmobranchii as their organizational level indicator. I. General analysis. J Hirnforsch 32:553–561

    PubMed  CAS  Google Scholar 

  • Oikawa S, Itazawa Y (1993) Allometric relationship between tissue respiration and body mass in a marine teleost, Porgy Pagrus major. Comp Biochem Physiol A 105:129–133

    Article  Google Scholar 

  • Porter RK, Hulbert AJ, Brand MD (1996) Allometry of mitochondrial proton leak: influence of membrane surface area and fatty acid composition. Am J Physiol Regul Integr Comp Physiol 271:R1550–R1560

    CAS  Google Scholar 

  • Pörtner HO, Hardewig I, Peck LS (1999) Mitochondrial function and critical temperature in the Antarctic bivalve, Laternula elliptica. Compa Biochem Physiol A 124:179–189

    Article  Google Scholar 

  • Post JR, Lee JA (1996) Metabolic ontogeny of teleost fishes. Can J Fish Aquat Sci 53:910–923

    Google Scholar 

  • Rolfe DFS, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77:731–758

    PubMed  CAS  Google Scholar 

  • Savina MV, Emelyanova LV, Belyaeva EA (2006) Bioenergetic parameters of lamprey and frog liver mitochondria during metabolic depression and activity. Comp Biochem Physiol B 145:296–305

    Article  PubMed  Google Scholar 

  • Schultz IR, Barron MG, Newman MC, Vick AM (1999) Blood flow distribution and tissue allometry in channel catfish. J Fish Biol 54:1275–1286

    Article  Google Scholar 

  • Sokolova IM (2004) Cadmium effects on mitochondrial function are enhanced by elevated temperatures in a marine poikilotherm, Crassostrea virginica Gmelin (Bivalvia: Ostreidae). J Exp Biol 207:2639–2648

    Article  PubMed  CAS  Google Scholar 

  • Suarez RK, Hochachka PW (1981) Preparation and properties of rainbow trout liver mitochondria. J Comp Physiol B 143:269–273

    CAS  Google Scholar 

  • Sui X, Qi Y (2008) Impact of hutiaoxia reservoir on the water temperature. China Popul Res Environ 18(5):001–006

    Google Scholar 

  • Trzcionka M, Withers KW, Klingenspor M, Jastroch M (2008) The effects of fasting and cold exposure on metabolic rate and mitochondrial proton leak in liver and skeletal muscle of an amphibian, the cane toad Bufo marinus. J Exp Biol 211:1911–1918

    Article  PubMed  CAS  Google Scholar 

  • Van den Thillart G, Modderkolk J (1978) The effect of temperature on state III respiration and on the unsaturation of membrane lipids of goldfish mitochondria. Biochim Biophys Acta 510:38–51

    Article  PubMed  Google Scholar 

  • Xie XJ, Sun RY (1992) The bioenergetics of the southern catfish (Silurus meridonalis Chen): growth rate as a function of ration level, body weight, and temperature. J Fish Biol 40:719–730

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (31000958), Natural Science Foundation Project of CQ (CSTC2008BB7097) and the National Basic Research Program of China (2010CB134405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Y., Wang, W., Zhang, Y. et al. Effect of body size on organ-specific mitochondrial respiration rate of the largemouth bronze gudgeon. Fish Physiol Biochem 39, 513–521 (2013). https://doi.org/10.1007/s10695-012-9716-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-012-9716-z

Keywords

Navigation