Skip to main content
Log in

Emerging Risks of Wildfires at the Wildland-Urban Interface in Mexico

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

As more intense and more frequent natural hazards result in human and economic losses, fires, and more specifically wildfires in wildland-urban interface/intermix (WUI) are among the natural hazards that present a substantial, albeit preventable risk of ecological and human disasters. Although wildfires are a largely researched area of study in forest ecology and natural sciences across the globe, with social science and interdisciplinary studies of risk catching up, WUI areas across North, Central and South America that show an increase in wildfire risk are currently under-researched, with the exception of Canada and the US. In this paper, we focus on wildfires in the Mexican WUI, which have historically been seen as a threat to forest ecosystems rather than as a threat to populations. This paper sets out to understand to what extent the under-researched WUI wildfires present risk to WUI populations in Mexico using a mixed methods approach. We perform a Mexico WUI fire diagnostics by drawing on the official datasets, documentation regarding preparedness, mitigation and response to wildfires affecting urban populations, and where information is lacking, we review media news sources regarding the outcomes for populations in the past WUI wildfires in Mexico. We conclude that a substantial proportion of WUI territory in Mexico is at risk from wildfires, potentially causing harm to populations in the future. Thus, more should be done to prepare these populations to respond, and mechanisms for fire risk mitigation, wildfire adaptation and recovery from fire effects should be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Data Availability

Available upon request.

Notes

  1. Built environment was identified using the “Built urban” land use reported by INEGI [40, 44, 45]. According to INEGI’s methodologies, “Built urban” land use refers to the demographic aggregates considering the natural and material works that encompasses them. Built areas that are small in area or density (smaller than 25 hectares) are not reported by INEGI.

  2. Urban polygons are the polygons that INEGI defines urban area for census purposes. This is not based on land use and we did not use this categorisation to identify built environment land uses.

References

  1. Brushlinsky NN, Ahrens M, Sokolov SV, Wagner P (2018). World fire statistics. CTIF

  2. IPCC (2018) Summary for policymakers In: Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.World Meteorological Organization, Geneva, Switzerland

  3. UNISDR (2017) Economic losses, poverty & disasters 1998–2017

  4. McNamee M, Meacham B, van Hees P, Bisby L, Chow WK, Coppalle A et al (2019) IAFSS agenda 2030 for a fire safe world. Fire Saf J. https://doi.org/10.1016/j.firesaf.2019.102889

    Article  Google Scholar 

  5. The Guardian (2022) ‘Heat apocalypse’ warning in western France as thousands flee wildfire [online]. Available at https://www.theguardian.com/world/2022/jul/18/heat-apocalypse-warning-western-france-thousands-flee-wildfire. Accessed 18 July 2022

  6. European Commission (2018) Forest fires in Europe, Middle East and North Africa 2017. https://doi.org/10.2788/99870

  7. Rego FC, Colaço MDCA (2013) Wildfire risk analysis. Encycl Environ. https://doi.org/10.1002/9780470057339.vnn023

    Article  Google Scholar 

  8. Zúñiga-Vásquez JM, Pompa-García M (2019) The occurrence of forest fires in Mexico presents an altitudinal tendency: a geospatial analysis. Nat Hazard 96(1):213–224. https://doi.org/10.1007/s11069-018-3537-z

    Article  Google Scholar 

  9. Ager AA, Preisler HK, Arca B, Spano D, Salis M (2014) Wildfire risk estimation in the Mediterranean area. Environmetrics 25(6):384–396. https://doi.org/10.1002/env.2269

    Article  MathSciNet  Google Scholar 

  10. Faulkner H, McFarlane BL, McGee TK (2009) Comparison of homeowner response to wildfire risk among towns with and without wildfire management. Environ Hazard 8(May):38–51. https://doi.org/10.3763/ehaz.2009.0006

    Article  Google Scholar 

  11. Mahmoud H, Chulahwat A (2018) Unraveling the complexity of wildland urban interface fires. Sci Rep 8(1):1–12. https://doi.org/10.1038/s41598-018-27215-5

    Article  Google Scholar 

  12. Radeloff VC, Hammer RB, Stewart SI, Fried JS, Holcomb SS, McKeefry JF (2005) The wildland-urban interface in the United States. Ecol Appl 15(3):799–805. https://doi.org/10.1890/04-1413

    Article  Google Scholar 

  13. de Torres Curth M, Biscayart C, Ghermandi L, Pfister G (2012) Wildland-urban interface fires and socioeconomic conditions: a case study of a Northwestern Patagonia City. Environ Manage. https://doi.org/10.1007/s00267-012-9825-6

    Article  Google Scholar 

  14. Modugno S, Balzter H, Cole B, Borrelli P (2016) Mapping regional patterns of large forest fires in wildland-urban interface areas in Europe. J Environ Manage 172:112–126. https://doi.org/10.1016/j.jenvman.2016.02.013

    Article  Google Scholar 

  15. Ronchi E, Wahlqvist J, Gwynne S, Kinateder M, Benichou N, Ma C, Rein G, Mitchell H, Kimball A (2020) WUI-NITY: a platform for the simulation of wildland-urban interface fire evacuation. NFPA

  16. Ronchi E, Wong S, Suzuki S, Theodori M, Wadhwani R Vaiciulyte S, Gwynne S, Rein G, Kristoffersen M, Lovreglio R, Marom I, Ma C, Antonellis D, Zhang X, Wang Z, Masoudvaziri N (2021). Case studies of large outdoor fires involving evacuation. Project Report. International Association of Fire Safety Science-Large Outdoor Fire & the Built Environment Working Group

  17. Abatzoglou JT, Williams AP (2016) Impact of anthropogenic climate change on wildfire across western US forests. Proc Natl Acad Sci USA 113:11770–11775

    Article  Google Scholar 

  18. Liu Y, Stanturf J, Goodrick S (2010) Trends in global wildfire potential in a changing climate. For Ecol Manage 259:685–697

    Article  Google Scholar 

  19. Cohen JD (2000) Preventing disaster: home ignitability in the wildland-urban interface. J For 98(3):15–21

    Google Scholar 

  20. Mutch RW, Rogers MJ, Stephens SL, Gill AM (2011) Protecting lives and property in the wildland-urban interface: communities in Montana and Southern California adopt australian paradigm. Fire Technol 47(2):357–377. https://doi.org/10.1007/s10694-010-0171-z

    Article  Google Scholar 

  21. Fox DM, Martin N, Carrega P, Andrieu J, Adnès C, Emsellem K, Ganga O, Moebius F, Tortorollo N, Fox EA (2015) Increases in fire risk due to warmer summer temperatures and wildland urban interface changes do not necessarily lead to more fires. Appl Geogr 56:1–12. https://doi.org/10.1016/j.apgeog.2014.10.001

    Article  Google Scholar 

  22. WWF (2017) Forests ablaze—causes and effects of global forest fires. Available at https://www.wwf.de/fileadmin/fm-wwf/Publikationen-PDF/WWF-Study-Forests-Ablaze.pdf

  23. EARTH.org (2021) 15 worst wildfires in US history. [online]. Available at https://earth.org/worst-wildfires-in-us-history/. Accessed 07 June 2022

  24. ONU HABITAT (2018) Superficie de CDMX crece a ritmo tres veces superior al de su población. Available at https://onuhabitat.org.mx/index.php/superficie-de-cdmx-crece-a-ritmo-tres-veces-superior-al-de-su-poblacion

  25. SEDATU (2015) Delimitación de las zonas metropolitanas de México, 2015. Available at https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/702825006792.pdf

  26. UN (2018) World urbanisation prospects. Available at https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf

  27. Bryant BP, Westerling AL (2014) Scenarios for future wildfire risk in California: links between changing demography, land use, climate, and wildfire. Environmetrics 25:454–471. https://doi.org/10.1002/env.2280

    Article  MathSciNet  Google Scholar 

  28. Syphard AD, Sheehan T, Rustigian-Romsos H, Ferschweiler K (2018) Mapping future fire probability under climate change: does vegetation matter? PLoS ONE 13(8):e0201680. https://doi.org/10.1371/journal.pone.0201680

    Article  Google Scholar 

  29. Atlas Nacional de Riesgos (2022. http://www.atlasnacionalderiesgos.gob.mx/

  30. Avila-Flores D, Pompa-Garcia M, Antonio-Nemiga X et al (2010) Driving factors for forest fire occurrence in Durango State of Mexico: a geospatial perspective. Chin Geogr Sci 20:491–497. https://doi.org/10.1007/s11769-010-0437-x

    Article  Google Scholar 

  31. Monjarás-Vega N, et al. (2019). Modeling and mapping fire risk from human factors in Mexico. In: Proceedings for the 6th International fire behavior and fuels conference. April 29–May 3, 2019, Albuquerque, New Mexico USA 6

  32. Rodríguez-Trejo DA, Fulé PZ (2003) Fire ecology of Mexican pines and a fire management proposal. Int J Wildl Fire 12(1):23–37. https://doi.org/10.1071/WF02040

    Article  Google Scholar 

  33. Pérez-Salicrup DR, Mendoza RO, Garduño Mendoza E, Martínez-Torres HL, Oceguera Salazar KA, Quintero Gradilla S, Castillo Navarro F, Celestino EA, González Cabán A (2018) Coordinación institucional para la realización de quemas prescritas y quemas controladas en México. Rev Mex Cienc For. https://doi.org/10.29298/rmcf.v9i49.169

    Article  Google Scholar 

  34. Molina-Azorin JF (2016) Mixed methods research: an opportunity to improve our studies and our research skills. Eur J Manag Bus Econ 25(2):37–38. https://doi.org/10.1016/j.redeen.2016.05.001

    Article  Google Scholar 

  35. CONAFOR (n.d) Serie histórica anual de incendios periodo 2010–2020 [online]. Available at https://datos.gob.mx/busca/dataset/incendios-forestales

  36. Cegielska K et al (2019) Shannon entropy as a peri-urban landscape metric: concentration of anthropogenic land cover element. J Spat Sci 64(3):469–489

    Article  Google Scholar 

  37. Song Y et al (2013) Comparing measures of urban land use mix. Comput Environ Urban Syst 42:1–13

    Article  Google Scholar 

  38. Lampin-Maillet C, Jappiot M, Long M, Bouillon C, Morge D, Ferrier JP (2009) Mapping wildland-urban interfaces at large scales integrating housing density and vegetation aggregation for fire prevention in the South of France. J Environ Manage 91(2010):732–741. https://doi.org/10.1016/j.jenvman.2009Oct001

    Article  Google Scholar 

  39. Hutchings P, Willcock S, Lynch K, Bundhoo D, Brewer T, Cooper S, Keech D et al (2022) Understanding rural-urban transitions in the global south through peri-urban turbulence. Nat Sustain 5(11):924–930. https://doi.org/10.1038/s41893-022-00920-w

    Article  Google Scholar 

  40. INEGI (2018) ‘Conjunto de Datos Vectoriales de Uso Del Suelo y Vegetación. Escala 1:250 000. Serie VII. Conjunto Nacional’. Electronic. Conjunto de Datos Vectoriales de Uso Del Suelo y Vegetación. Mexico: Instituto Nacional de Estadística y Geografía [National Institute of Statistics and Geography]. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463842781

  41. INEGI (2010) ‘Marco Geoestadístico 2010 Versión 4.3 (Censo de Población y Vivienda 2010)’. Electronic. Marco Geoestadístico. Mexico: Instituto Nacional de Estadística y Geografía [National Institute of Statistics and Geography]. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825296520

  42. INEGI (2015) ‘Cartografía Geoestadística Urbana y Rural Amanzanada. Cierre de La Encuesta Intercensal 2015’. Electronic. Marco Geoestadístico. Mexico: Instituto Nacional de Estadística y Geografía [National Institute of Statistics and Geography]. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825209025

  43. INEGI (2018b) ‘Marco Geoestadístico, Diciembre 2018’. Electronic. Marco Geoestadístico. Mexico: Instituto Nacional de Estadística y Geografía [National Institute of Statistics and Geography]. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463674658

  44. INEGI (2009) ‘Conjunto de Datos Vectoriales de La Carta de Uso Del Suelo y Vegetación. Escala 1:250 000. Serie IV. Conjunto Nacional’. Electronic. Conjunto de Datos Vectoriales de La Carta de Uso Del Suelo y Vegetación. Mexico: Instituto Nacional de Estadística y Geografía [National Institute of Statistics and Geography]. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825007023

  45. INEGI (2016) ‘Conjunto de Datos Vectoriales de La Carta de Uso Del Suelo y Vegetación. Escala 1:250 000. Serie VI. Conjunto Nacional’. Electronic. Conjunto de Datos Vectoriales de La Carta de Uso Del Suelo y Vegetación. Mexico: Instituto Nacional de Estadística y Geografía [National Institute of Statistics and Geography]. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463173359

  46. Perez-Verdin G, Navar-Chaidez JJ, Grebner DL, Soto-Alvarez C (2012) Disponibilidad y costos de producción de biomasa forestal como materia prima para la producción de bioetanol. For Syst 21(3):526. https://doi.org/10.5424/fs/2012213-02636

    Article  Google Scholar 

  47. Romero-Lankao P, Qin H, Hughes S, Haeffner M, Borbor-Cordova M (2012) Urban vulnerability and adaptation to the health impacts of air pollution and climate extremes in Latin American cities. In urban areas and global climate change, vol 12. Emerald Group Publishing Limited, pp 247–275

    Chapter  Google Scholar 

  48. Protección Civil, Nayarit (2015) Plan estatal de contingencias incendios forestales 2015 direccion estatal de Proteccion Civil y bomberos

  49. CONAFOR (2019) Programa de manejo del fuego

  50. Neger C (2021) Territorial configuration of the social actors involved in fire management in the Los Tuxtlas mountains (Mexico). Boletín de la Asociación de Geógrafos Españoles. https://doi.org/10.21138/bage.3073

    Article  Google Scholar 

  51. Mathews AS (2006) Ignorancia, conocimiento y poder: el Corte de la Madera, el trafico ilegal y las políticas forestales en Mexico. Desacatos 21(mayo-agosto):135–160

    Google Scholar 

  52. CENAPRED (2012) Características e impacto socioeconómico de los principales desastres ocurridos en la república Mexicana en el año 2011

  53. CENAPRED (2019) Impacto socioeconómico de los principales desastres ocurridos en México

  54. Alcántara HM (2017). Hasta el día de ayer continuaba activo el incendio forestal en el municipio de Zacatlán; hoy se sofoca: Conafor. La Jornada de Oriente (06–04–2017) [online]. Available at https://www.lajornadadeoriente.com.mx/puebla/dia-ayer-continuab

  55. Alvarado NF (2018) Combaten incendio forestal en Valle de Bravo. El Sol de Mexico (29–04–2018) [online]. Available at https://www.elsoldemexico.com.mx/metropoli/valle-de-mexico/combaten-incendio-forestal-en-valle-de-bravo-1649919.html. Accessed 19 Oct 2021

  56. Ávila E (2019) Incendio forestal obliga a evacuación de 100 familias en Veracruz. El Universal (11–03–2019) [online]. Available at https://www.eluniversal.com.mx/estados/incendio-forestal-obliga-evacuacion-de-100-familias-en-veracruz. Accessed 19 Oct 2021

  57. El Sol de Mexico (2019) Tras incendio en Xochimilco, no se registraron muertes ni daños en viviendas (21–02–2019) [online]. Available at https://www.elsoldemexico.com.mx/metropoli/cdmx/tras-incendio-en-xochimilco-no-se-registraron-muertes-ni-danos-en-viviendas-alcaldia-3089501.html. Accessed 19 Oct 2021

  58. El Universal (2016) Evacuan viviendas por incendio forestal en Tepoztlán (07–04–2016) [online]. Available at https://www.eluniversal.com.mx/articulo/estados/2016/04/7/evacuan-viviendas-por-incendio-forestal-en-tepoztlan. Accessed 19 Oct 2021

  59. Europapress (2019) Mueren tres personas en un incendio forestal en el norte de México. (26/10/2019) [online]. Available at https://www.europapress.es/internacional/noticia-mueren-tres-personas-incendio-forestal-norte-mexico-20191026063151.html. Accessed 19 Oct 2021

  60. García A (2019) “Si el clima lo permite” incendio en Veracruz podría ser extinguido hoy. El Sol de Mexico (13–03–2019) [online]. Available at https://www.elsoldemexico.com.mx/republica/sociedad/actividades-control-incendio-las-vigas-xalapa-veracruz-3181947.html. Accessed 19 Oct 2021

  61. Gómez E (2020) Reportan cuatro incendios forestales en Veracruz. La Jornada (15–04–2021) [online]. Available at https://www.jornada.com.mx/ultimas/estados/2020/04/15/reportan-cuatro-incendios-forestales-en-veracruz-5159.html. Accessed 19 Oct 2021

  62. Hernández A (2015) Incendio en oleoducto de Puebla obliga a desalojar 6 localidades. La Jornada (21–03–2015) [online]. Available at https://www.jornada.com.mx/2015/03/21/estados/027n1est. Accessed 19 Oct 2021

  63. Infobae (2019) Baja California registra nuevos incendios forestales, suspendieron clases en tres municipios (31–10–2019) [online]. Available at https://www.infobae.com/america/mexico/2019/10/31/baja-california-registra-nuevos-incendios-forestales-suspendieron-clases-en-tres-municipios/. Accessed 19 Oct 2021

  64. La Jornada (2019) Incendio en la Sierra de Guadalupe (28–03–2019) [online]. Available at https://www.jornada.com.mx/2019/03/28/capital/033n4cap. Accessed 19 Oct 2021

  65. La Jornada (2019) Se registran 24 incendios en Tijuana; hay 2 militares muertos (09–06–2020) [online]. Available at https://www.jornada.com.mx/ultimas/estados/2020/06/09/se-registran-al-menos-24-pequenos-incendios-en-tijuana-hay-2-militares-muertos-9572.html#ljn-nota-carousel. Accessed 19 Oct 2021

  66. Martínez R (2020) Incendios forestales ponen en riesgo zonas arqueológicas de Quintana Roo. El Sol de Mexico (28–04–2020) [online]. Available at https://www.elsoldemexico.com.mx/republica/sociedad/incendios-forestales-ponen-en-riesgo-zonas-arqueologicas-de-quintana-roo-5162575.html. Accessed 19 Oct 2021

  67. Miranda J (2017) Evacuan a 200 habitantes por incendios forestales en Morelos. El Universal (22–03–2017) [online]. Available at https://www.eluniversal.com.mx/articulo/estados/2017/03/22/evacuan-200-habitantes-por-incendios-forestales-en-morelos. Accessed 19 Oct 2021

  68. Miranda J (2020) Combaten incendio forestal en Tepoztlán. El Universal (20–05–2020) [online]. Available at https://www.eluniversal.com.mx/estados/combaten-incendio-forestal-en-tepoztlan. Accessed 19 Oct 2021

  69. Montoya R (2020) Evacuan a mil 400 pobladores por incendio forestal en Hidalgo. La Jornada (13–04–2020) [online]. Available at https://www.jornada.com.mx/ultimas/estados/2020/04/13/evacuan-a-mil-400-pobladores-por-incendio-forestal-en-hidalgo-1649.html. Accessed 19 Oct 2021

  70. Ortega R (2019) Tras 25 horas controlan el incendio en el Bosque de La Primavera. El Occidental (13–04–2019) [online]. Available at https://www.elsoldemexico.com.mx/republica/sociedad/bosque-de-la-primavera-incendio-jalisco-videos-fotos-3319835.html. Accessed 19 Oct 2021

  71. Ramírez AL (2020) Se registran 24 incendios en Tijuana; hay 2 militares muertos. La Jornada [online]. Available at https://www.jornada.com.mx/ultimas/estados/2020/06/09/se-registran-al-menos-24-pequenos-incendios-en-tijuana-hay-2-militares-muertos-9572.html#ljn-nota-carousel. Accessed 19 Oct 2021

  72. Rincon E (2013) Desalojan a mil 200 en Hidalgo por incendios. Excelsior (14–04–2013) [online]. Available at https://www.excelsior.com.mx/nacional/2013/04/14/893848. Accessed 19 Oct 2021

  73. UDGTV (2021) Incendio forestal en el norte de México obliga a desalojar a unas 400 personas; [online]. Available at https://udgtv.com/noticias/incendio-forestal-mexico-obliga-desalojar-400-personas/. Accessed 19 Oct 2021

  74. Bravo AH, Sosa ER, Sánchez AP, Jaimes PM, Saavedra RMI (2002) Impact of wildfires on the air quality of Mexico City, 1992–1999. Environ Pollut 117(2):243–253. https://doi.org/10.1016/S0269-7491(01)00277-9

    Article  Google Scholar 

  75. Crounse JD, DeCarlo PF, Blake DR, Emmons LK, Campos TL, Apel EC, Wennberg PO (2009) Biomass burning and urban air pollution over the Central Mexican Plateau. Atmos Chem Phys 9(14):4929–4944. https://doi.org/10.5194/acp-9-4929-2009

    Article  Google Scholar 

  76. Price OF, Bradstock RA (2013) The spatial domain of wildfire risk and response in the wildland urban interface in Sydney, Australia. Nat Hazard 13(12):3385–3393

    Article  Google Scholar 

  77. CONAFOR (2010). Incendios forestales. Guía práctica para comunicadores

  78. EMV, Emergency Management Victoria (2016) Victorian bushfire handbook

  79. PPFENI (2006–2012) Plan de Protection des Forêts et des Espaces Naturels contre les Incendies en Corse

  80. Protección Civil ES (2021) Incendios forestales [online]. Available at https://www.proteccioncivil.es/coordinacion/gestion-de-riesgos/incendios-forestales

  81. Ready for wildfire (2021) Go! Evacuation guide [online]. Available at https://www.readyforwildfire.org/prepare-for-wildfire/go-evacuation-guide/

  82. Protección Civil, Morelos (2015) Plan de contingencias, incendios forestales, 2015, Morelos

  83. AFAC, Australasian Fire and Emergency Service Authorities Council (2015) Community emergency response model (CERM). Validation Project, (March)

  84. Secretaría de Seguridad y Protección Ciudadana (2020) Impacto socioeconómico de los principales desastres ocurridos en México

  85. UNAM (2022) En lo que va del año, más de mil incendios forestales en el país. Gaceta UNAM [online]. Available at https://www.gaceta.unam.mx/en-lo-que-va-del-ano-mas-de-mil-incendios-forestales-en-el-pais/. Accessed: 07 June 2022

  86. Stewart SI et al (2007) Defining the wildland-urban interface. J For 105(4):201–207

    Google Scholar 

Download references

Acknowledgements

The corresponding author acknowledges the support from the “Coordinación de la Investigación Científica” from the “Universidad Nacional Autónoma de México” through a scholarship to pursue postdoctoral studies with a grant number: CJIC/CTIC/1098/2020, as well as the support of CONACYT Convocatoria 2022(1) Estancias Posdoctorales por México—Modalidad Académica, CVU 1109762. The authors would also like to acknowledge Dr Enrico Ronchi, Dr Erica Kuligowski, and Dr Steve Gwynne for their encouragement and providing feedback on the original idea. The authors are also grateful to the Reviewers whose feedback helped improve the original manuscript.

Funding

The funding for the corresponding author was provided by CONACYT, Mexico (Grant No. 1109762) and Coordinación de la Investigación Científica, UNAM (Grant No. CJIC/CTIC/1098/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Vaiciulyte.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

No ethical approval required due to human subjects not being involved in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 3 and 4.

Table 3 Number of Fires Reported in the CONAFOR Database, by Year and State
Table 4 WUI Fires per State per Year

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaiciulyte, S., Rivero-Villar, A. & Guibrunet, L. Emerging Risks of Wildfires at the Wildland-Urban Interface in Mexico. Fire Technol 59, 983–1006 (2023). https://doi.org/10.1007/s10694-023-01376-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-023-01376-w

Keywords

Navigation