Skip to main content

Advertisement

Log in

Research on the Reversible and Irreversible Heat Generation of LiNi1−x−yCoxMnyO2-Based Lithium-Ion Batteries

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Accidents involving fires and explosions caused by lithium-ion battery thermal runaway have severely hampered the development of electric vehicles. With the purpose of improving the safety of battery operation and avoiding thermal runaway of lithium-ion batteries. This work conducts a full-scale heat generation quantitative test of two types of LiNi1−x−yCoxMnyO2-based commercial batteries by measuring the voltage-temperature coefficient (dE/dT) and the overpotential using the galvanostatic intermittent titration technique (GITT). Results indicate that that the heat generation rates of the two types of batteries exhibit similar trends. Battery heat generation is a function of C-rate, temperature and state of charge. Among them, C-rate is the most important influencing factor. The reversible heat contribution is the most significant at higher temperatures and lower C-rates. In most cases, the irreversible heat accounts for the dominant contribution to the total heat generation. The contribution of heat generation due to mass transport limitation is dominant among irreversible heat, and it is more significantly affected by temperature and state of charge, whereas the ohmic contribution shows a minor impact. The detailed analysis of the reversible and irreversible heat generation can provide effective theoretical guidance for safety warning and fire protection of lithium-ion battery systems, minimize the probability of the risk of fire accidents of the lithium-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bandhauer TM, Garimella S, Fuller TF (2014) Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery. J Power Sources 247:618–628. https://doi.org/10.1016/j.jpowsour.2013.08.015

    Article  Google Scholar 

  2. Liu K, Li K, Peng Q, Zhang C (2018) A brief review on key technologies in the battery management system of electric vehicles. Front Mech Eng 14(1):47–64. https://doi.org/10.1007/s11465-018-0516-8

    Article  Google Scholar 

  3. Rezaei A, Burl JB, Zhou B (2018) Estimation of the ECMS equivalent factor bounds for hybrid electric vehicles. IEEE Trans Control Syst Technol 26(6):2198–2205

    Article  Google Scholar 

  4. Plötz P, Funke SÁ, Jochem P (2018) Empirical fuel consumption and CO2 emissions of plug-in hybrid electric vehicles. J Ind Ecol 22(4):773–784

    Article  Google Scholar 

  5. Xia L, Miao H, Wang F, Zhang C, Wang J, Zhao J, Yuan J (2021) Investigation of fluorinated ether-containing electrolytes for high energy-density nickel-rich LiNi0.8Co0.1Mn0.1O2 electrodes. Int J Energy Res 45(7):9936–9947. https://doi.org/10.1002/er.6488

    Article  Google Scholar 

  6. Liu X, Ren D, Hsu H, Feng X, Xu G-L, Zhuang M, Gao H, Lu L, Han X, Chu Z, Li J, He X, Amine K, Ouyang M (2018) Thermal runaway of lithium-ion batteries without internal short circuit. Joule 2(10):2047–2064. https://doi.org/10.1016/j.joule.2018.06.015

    Article  Google Scholar 

  7. Feng XN, Ouyang MG, Liu X, Lu LG, Xia Y, He XM (2018) Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater 10:246–267. https://doi.org/10.1016/j.ensm.2017.05.013

    Article  Google Scholar 

  8. Lopez CF, Jeevarajan JA, Mukherjee PP (2015) Experimental analysis of thermal runaway and propagation in lithium-ion battery modules. J Electrochem Soc 162(9):A1905–A1915. https://doi.org/10.1149/2.0461809jes

    Article  Google Scholar 

  9. Feng X, Zheng S, Ren D, He X, Wang L, Cui H, Liu X, Jin C, Zhang F, Xu C, Hsu H, Gao S, Chen T, Li Y, Wang T, Wang H, Li M, Ouyang M (2019) Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Appl Energy 246:53–64. https://doi.org/10.1016/j.apenergy.2019.04.009

    Article  Google Scholar 

  10. Hu Z, He X, Restuccia F, Rein G (2020) Numerical study of self-heating ignition of a box of lithium-ion batteries during storage. Fire Technol 56(6):2603–2621. https://doi.org/10.1007/s10694-020-00998-8

    Article  Google Scholar 

  11. Li H, Peng W, Yang X, Chen H, Sun J, Wang Q (2020) Full-scale experimental study on the combustion behavior of lithium ion battery pack used for electric vehicle. Fire Technol 56(6):2545–2564. https://doi.org/10.1007/s10694-020-00988-w

    Article  Google Scholar 

  12. Liang C, Jiang L, Wang Q, Sun J (2020) Dynamic heat generation of LiNi0.5Co0.2Mn0.3O2 half cell under cycling based on an in situ micro-calorimetry. Fire Technol 56(6):2387–2404. https://doi.org/10.1007/s10694-020-00956-4

    Article  Google Scholar 

  13. Sun P, Bisschop R, Niu H, Huang X (2020) A review of battery fires in electric vehicles. Fire Technol 56(4):1361–1410. https://doi.org/10.1007/s10694-019-00944-3

    Article  Google Scholar 

  14. Wang Q, Wen J, Stoliarov S (2020) Special issue on lithium battery fire safety. Fire Technol 56(6):2345–2347. https://doi.org/10.1007/s10694-020-01048-z

    Article  Google Scholar 

  15. Nagourney T, Jordan J, Marsh L, Scardino D, May BM (2021) The implications of post-fire physical features of cylindrical 18650 lithium-ion battery cells. Fire Technol 57(4):1707–1722. https://doi.org/10.1007/s10694-020-01077-8

    Article  Google Scholar 

  16. Yan H, Marr KC, Ezekoye OA (2021) Towards fire forensic characteristics of failed cylindrical format lithium-ion cells and batteries. Fire Technol 57(4):1723–1752. https://doi.org/10.1007/s10694-020-01079-6

    Article  Google Scholar 

  17. Bernardi D, Pawlikowski E, Newman J (1984) A general energy balance for battery systems. J Electrochem Soc 132(1):5–12. https://doi.org/10.1149/1.2113792

    Article  Google Scholar 

  18. Thomas KE, Newman J (2003) Heats of mixing and of entropy in porous insertion electrodes. J Power Sources 119–121:844–849. https://doi.org/10.1016/S0378-7753(03)00283-0

    Article  Google Scholar 

  19. Mao J, Tiedemann W, Newman J (2014) Simulation of temperature rise in Li-ion cells at very high currents. J Power Sources 271:444–454. https://doi.org/10.1016/j.jpowsour.2014.08.033

    Article  Google Scholar 

  20. Feng X, Zheng S, Ren D, He X, Wang L, Liu X, Li M, Ouyang M (2019) Key characteristics for thermal runaway of Li-Ion batteries. Energy Procedia 158:4684–4689. https://doi.org/10.1016/j.egypro.2019.01.736

    Article  Google Scholar 

  21. Liu P, Li Y, Mao B, Chen M, Huang Z, Wang Q (2021) Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery. Appl Therm Eng 192:116949–116961. https://doi.org/10.1016/j.applthermaleng.2021.116949

    Article  Google Scholar 

  22. Huang Z, Li X, Wang Q, Duan Q, Li Y, Li L, Wang Q (2021) Experimental investigation on thermal runaway propagation of large format lithium ion battery modules with two cathodes. Int J Heat Mass Transf 172:121077–121090. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121077

    Article  Google Scholar 

  23. Liu B, Jia Y, Yuan C, Wang L, Gao X, Yin S, Xu J (2020) Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review. Energy Storage Mater 24:85–112. https://doi.org/10.1016/j.ensm.2019.06.036

    Article  Google Scholar 

  24. Liu B, Jia Y, Li J, Yin S, Yuan C, Hu Z, Wang L, Li Y, Xu J (2018) Safety issues caused by internal short circuits in lithium-ion batteries. J Mater Chem A 6(43):21475–21484. https://doi.org/10.1039/C8TA08997C

    Article  Google Scholar 

  25. Lu WQ, Yang H, Prakash J (2006) Determination of the reversible and irreversible heats of LiNi0.8Co0.2O2/mesocarbon microbead Li-ion cell reactions using isothermal microcalorimetery. Electrochim Acta 51(7):1322–1329

    Article  Google Scholar 

  26. Jalkanen K, Aho T, Vuorilehto K (2013) Entropy change effects on the thermal behavior of a LiFePO4/graphite lithium-ion cell at different states of charge. J Power Sources 243:354–360. https://doi.org/10.1016/j.jpowsour.2013.05.199

    Article  Google Scholar 

  27. Viswanathan VV, Choi D, Wang D, Xu W, Towne S, Williford RE, Zhang J-G, Liu J, Yang Z (2010) Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management. J Power Sources 195(11):3720–3729. https://doi.org/10.1016/j.jpowsour.2009.11.103

    Article  Google Scholar 

  28. Heubner C, Schneider M, Michaelis A (2016) Detailed study of heat generation in porous LiCoO2 electrodes. J Power Sources 307:199–207. https://doi.org/10.1016/j.jpowsour.2015.12.096

    Article  Google Scholar 

  29. Gunnarshaug AF, Vie PJS, Kjelstrup S (2021) Review—reversible heat effects in cells relevant for lithium-ion batteries. J Electrochem Soc 168(5):050522–050540. https://doi.org/10.1149/1945-7111/abfd73

    Article  Google Scholar 

  30. Mao J, Zhang P, Liu X, Shao G, Dai K (2020) Entropy change characteristics of the LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries. ACS Omega 5:4109–4114

    Article  Google Scholar 

  31. Bai Y, Li L, Li Y, Chen G, Zhao H, Wang Z, Wu C, Ma H, Wang X, Cui H, Zhou J (2019) Reversible and irreversible heat generation of NCA/Si–C pouch cell during electrochemical energy-storage process. J Energy Chem 29:95–102. https://doi.org/10.1016/j.jechem.2018.02.016

    Article  Google Scholar 

  32. Liang C, Jiang L, Ye S, Wang Z, Wei Z, Wang Q, Sun J (2021) Precise in-situ and ex-situ study on thermal behavior of LiNi1/3Co1/3Mn1/3O2/graphite coin cell: from part to the whole cell. J Energy Chem 54:332–341. https://doi.org/10.1016/j.jechem.2020.06.008

    Article  Google Scholar 

  33. Zhao W, Rohde M, Mohsin IU, Ziebert C, Seifert HJ (2020) Heat generation in NMC622 coin cells during electrochemical cycling: separation of reversible and irreversible heat effects. Batteries 6(4):55–66. https://doi.org/10.3390/batteries6040055

    Article  Google Scholar 

  34. Lin CJ, Xu SC, Liu JL (2018) Measurement of heat generation in a 40 Ah LiFePO4 prismatic battery using accelerating rate calorimetry. Int J Hydrogen Energy 43(17):8375–8384. https://doi.org/10.1016/j.ijhydene.2018.03.057

    Article  Google Scholar 

  35. Bai Y, Li L, Li Y, Chen G, Zhao H, Wang Z, Wu C, Ma H, Wang X, Cui H, Zhou J (2019) Reversible and irreversible heat generation of NCA/Si–C pouch cell during electrochemical energy-storage process. J Energy Chem 29(02):95–102. https://doi.org/10.1016/j.jechem.2018.02.016

    Article  Google Scholar 

  36. Cano ZP, Banham D, Ye S, Hintennach A, Lu J, Fowler M, Chen Z (2018) Batteries and fuel cells for emerging electric vehicle markets. Nat Energy 3(4):279–289

    Article  Google Scholar 

  37. Needell ZA, McNerney J, Chang MT, Trancik JE (2016) Potential for widespread electrification of personal vehicle travel in the United States. Nat Energy 1(9):16112

    Article  Google Scholar 

  38. Du S, Lai Y, Ai L, Ai L, Cheng Y, Tang Y, Jia M (2017) An investigation of irreversible heat generation in lithium ion batteries based on a thermo-electrochemical coupling method. Appl Therm Eng 121:501–510. https://doi.org/10.1016/j.applthermaleng.2017.04.077

    Article  Google Scholar 

  39. Gu WB, Wang CY (2000) Thermal-electrochemical modeling of battery systems. J Electrochem Soc 147(8):2910–2922. https://doi.org/10.1149/1.1393625

    Article  Google Scholar 

  40. Jalkanen K, Vuorilehto K (2015) Entropy change characteristics of LiMn0.67Fe0.33PO4 and Li4Ti5O12 electrode materials. J Power Sources 273:351–359. https://doi.org/10.1016/j.jpowsour.2014.09.091

    Article  Google Scholar 

  41. Al Hallaj S, Maleki H, Hong JS, Selman JR (1999) Thermal modeling and design considerations of lithium-ion batteries. J Power Sources 83(1–2):1–8. https://doi.org/10.1016/S0378-7753(99)00178-0

    Article  Google Scholar 

  42. Yang H, Prakash J (2004) Determination of the reversible and irreversible heats of a LiNi0.8Co0.15Al0.05O2/natural graphite cell using electrochemical-calorimetric technique. J Electrochem Soc 151(8):A1222–A1229. https://doi.org/10.1149/1.1765771

    Article  Google Scholar 

  43. Heubner C, Schneider M, Michaelis A (2017) Heat generation rates of NaFePO4 electrodes for sodium-ion batteries and LiFePO4 electrodes for lithium-ion batteries: a comparative study. J Solid State Electrochem 22(4):1099–1108. https://doi.org/10.1007/s10008-017-3828-4

    Article  Google Scholar 

  44. Wen CJ, Boukamp BA, Huggins RA, Weppner W (2019) Thermodynamic and mass transport properties of “ LiAl .” J Electrochem Soc 126(12):2258–2266. https://doi.org/10.1149/1.2128939

    Article  Google Scholar 

  45. Xu X, Wang H, Lu S, Peng S, Xiang Y (2016) A phosphotungstic acid self-anchored hybrid proton exchange membrane for direct methanol fuel cells. RSC Adv 6(49):43049–43055. https://doi.org/10.1039/C6RA07318B

    Article  Google Scholar 

  46. Li X, Zhang J, Shen L, Ma Y, Lei W, Cui Q, Zou G (2008) Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl Phys A 94(2):387–392. https://doi.org/10.1007/s00339-008-4816-4

    Article  Google Scholar 

  47. Reimers JN, Dahn JR (1992) Electrochemical and in situ x-ray diffraction studies of lithium intercalation in LixCoO2. J Electrochem Soc 139(8):2091–2097. https://doi.org/10.1149/1.2221184

    Article  Google Scholar 

  48. Liebmann T, Heubner C, Schneider M, Michaelis A (2018) Investigations on the reversible heat generation rates of blended Li-insertion electrodes. J Solid State Electrochem 23(1):245–250. https://doi.org/10.1007/s10008-018-4127-4

    Article  Google Scholar 

  49. Zhang Q, White RE (2007) Moving boundary model for the discharge of a LiCoO2 electrode. J Electrochem Soc 154(6):A587–A596. https://doi.org/10.1149/1.2837302

    Article  Google Scholar 

  50. Nara H, Mukoyama D, Yokoshima T, Momma T, Osaka T (2015) Impedance analysis with transmission line model for reaction distribution in a pouch type lithium-ion battery by using micro reference electrode. J Electrochem Soc 163(3):A434–A441. https://doi.org/10.1149/2.0341603jes

    Article  Google Scholar 

  51. Cao C, Abate II, Sivonxay E, Shyam B, Jia C, Moritz B, Devereaux TP, Persson KA, Steinrück H-G, Toney MF (2019) Solid electrolyte interphase on native oxide-terminated silicon anodes for li-ion batteries. Joule 3(3):762–781. https://doi.org/10.1016/j.joule.2018.12.013

    Article  Google Scholar 

  52. Yang X-G, Liu T, Gao Y, Ge S, Leng Y, Wang D, Wang C-Y (2019) Asymmetric temperature modulation for extreme fast charging of lithium-ion batteries. Joule 3(12):3002–3019. https://doi.org/10.1016/j.joule.2019.09.021

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51604244), the Energy Storage Science and Technology Key Laboratory of Zhengzhou Open Fund (2019001), the Energy Storage Materials and Processes Key Laboratory of Henan Province Open Fund (2021003), and the Key Research and Development and Promotion of Special Projects (Scientific and Technological Research) of Henan Province (212102210188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Mao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wei, F., Zhang, P. et al. Research on the Reversible and Irreversible Heat Generation of LiNi1−x−yCoxMnyO2-Based Lithium-Ion Batteries. Fire Technol 59, 1029–1049 (2023). https://doi.org/10.1007/s10694-022-01220-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-022-01220-7

Keywords

Navigation