Skip to main content
Log in

The experimental investigation of thermal runaway characteristics of lithium battery under different nitrogen concentrations

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal runaway (TR) is one of the main concerns in battery application due to their hazard level for the people and environment. In this work, the thermal runaway behaviors of lithium-ion batteries (LIBs) are investigated in ambient nitrogen (N2) concentration from 78 to 100%. Several parameters are measured to assess the fire hazards of LIBs, including battery surface temperature (Tsurf), ignition time (tig), total mass loss, heat release rate, and total heat release. The experimental results show that the risk of TR increases with the increase in state of charge. For different N2 concentrations, the addition of N2 will reduce oxygen (O2) concentration and weaken internal reactions, while excessive N2 will react with lithium-ion inside the LIBs. 82% N2 concentration shows the greatest inhibition effect on TR, where the values of battery surface temperature, total mass loss, heat release rate, and the total heat release reach the minimum ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

HRR:

Heat release rate, kW

LIB:

Lithium-ion battery

PCM:

Phase change material

SOC:

State of charge

THR:

Total heat release

TR:

Thermal runaway

t ig :

The ignition time, s

T max :

The maximum temperature, °C

t rup :

The rupture time, s

T surf :

The surface temperature, °C

References

  1. Zhang QS, Niu JH, Zhao ZH, Wang Q. Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states. J Energy Storage. 2022;45: 103759.

    Article  Google Scholar 

  2. Baird AR, Archibald EJ, Marr KC, Ezekoye OA. Explosion hazards from lithium-ion battery vent gas. J Power Sources. 2020;446: 227257.

    Article  CAS  Google Scholar 

  3. Zhao CP, Sun JH, Wang QS. Thermal runaway hazards investigation on 18650 lithium-ion battery using extended volume accelerating rate calorimeter. J Energy Storage. 2020;28: 101232.

    Article  Google Scholar 

  4. Belov D, Yang M-H. Investigation of the kinetic mechanism in overcharge process for Li-ion battery. Solid State Ion. 2008;179:1816–21.

    Article  CAS  Google Scholar 

  5. Guo GF, Long B, Cheng B, Zhou SQ, Xu P, Cao B. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application. J Power Sources. 2010;195:2393–8.

    Article  CAS  Google Scholar 

  6. Lamb J, Orendorff CJ. Evaluation of mechanical abuse techniques in lithium-ion batteries. J Power Sources. 2014;247:189–96.

    Article  CAS  Google Scholar 

  7. Wang M, Le AV, Noelle DJ, Shi Y, Meng YS, Qiao Y. Internal-short-mitigating current collector for lithium-ion battery. J Power Sources. 2017;349:84–93.

    Article  CAS  Google Scholar 

  8. Li WF, Rao S, Xiao Y, Gao ZH, Chen YP, Wang HW, Ouyang MG. Fire boundaries of lithium-ion cell eruption gases caused by thermal runaway. Science. 2021;24:102401.

    CAS  Google Scholar 

  9. Wang WH, He S, He TF, You TY, Parker T, Wang QS. Suppression behavior of water mist containing compound additives on lithium-ion batteries fire. Process Saf Environ. 2022;161:476–87.

    Article  CAS  Google Scholar 

  10. Xie J, Li JP, Wang JH, Jiang JC. Fire protection design of a lithium-ion battery warehouse based on numerical simulation results. J Loss Prevent Proc. 2022;80: 104885.

    Article  Google Scholar 

  11. Kise M, Yoshioka S, Hamano K, Kuriki H, Nishimura T, Urushibata H. Alternating current impedance behavior and overcharge tolerance of lithium-ion batteries using positive temperature coefficient cathodes. J Electrochem Soc. 2006;53:1732–6.

    Google Scholar 

  12. Partin P, Zeng S, Onnerud P, Song Y, Chamberlain R. Integrated current-interrupt device for lithium-ion cells. US. Pat No. US20080008928A1; 2008.

  13. Yim H, Maeng S-Y. Lithium-ion secondary battery having safety vent responsive to temperature and pressure. US. Pat No. US7993778B2; 2011.

  14. Liu KH, Xiao Y, Zhang H, Pang P, Shu CM. Inhibiting effects of carbonised and oxidised powders treated with ionic liquids on spontaneous combustion. Process Saf Environ. 2022;157:237–45.

    Article  CAS  Google Scholar 

  15. Wu ZH, Wu Y, Tang Y, Jiang JC, Huang AC. Evaluation of composite flame-retardant electrolyte additives improvement on the safety performance of lithium-ion batteries. Process Saf Environ. 2023;169:285–92.

    Article  CAS  Google Scholar 

  16. Wang QS, Jiang LH, Yu Y, Sun JH. Progress of enhancing the safety of lithium-ion battery from the electrolyte aspect. Nano Energy. 2019;55:93–114.

    Article  Google Scholar 

  17. Zhang WC, Huang LS, Zhang ZB, Li XY, Ma RX, Ren YM, Wu WX. Non-uniform phase change material strategy for directional mitigation of battery thermal runaway propagation. Renew Energ. 2022;200:1338–51.

    Article  Google Scholar 

  18. Dai XY, Kong DP, Du J, Zhang Y, Ping P. Investigation on effect of phase change material on the thermal runaway of lithium-ion battery and exploration of flame retardancy improvement. Process Saf Environ. 2022;159:232–42.

    Article  CAS  Google Scholar 

  19. Yang XL, Duan YK, Feng XN, Chen TY, Xu CS, Rui XY, Ouyang MG, Lu LG, Han XB, Ren DS, Zhang ZP, Li C, Gao S. An Experimental study on preventing thermal runaway propagation in lithium-ion battery module using aerogel and liquid cooling plate together. Fire Technol. 2020;56(6):2527–602.

    Article  Google Scholar 

  20. Niu HC, Chen CX, Liu YH, Li L, Li Z, Ji D, Huang XY. Mitigating thermal runaway propagation of NCM 811 prismatic batteries via hollow glass microspheres plates. Process Saf Environ. 2022;162:672–83.

    Article  CAS  Google Scholar 

  21. Zhao JC, Lu S, Fu YY, Ma WT, Cheng Y, Zhang HP. Experimental study on thermal runaway behaviors of 18650 li-ion battery under enclosed and ventilated conditions. Fire Safety J. 2021;125: 103417.

    Article  CAS  Google Scholar 

  22. Chen MY, Liu JH, He YP, Yuen R, Wang J. Study of the fire hazards of lithium-ion batteries at different pressures. Appl Therm Eng. 2017;125:1061–74.

    Article  Google Scholar 

  23. Zhang YJ, Wang H, Li WF, Li C. Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries. eTransportation. 2019;2:100031.

    Article  Google Scholar 

  24. Lyon RE, Walters RN. Energetics of lithium-ion battery failure. J Hazard Mater. 2016;318:164–72.

    Article  PubMed  CAS  Google Scholar 

  25. Weng JW, Ouyang DX, Liu YH, Chen MY, Li YP, Huang XY, Wang J. Alleviation on battery thermal runaway propagation: effects of oxygen level and dilution gas. J Power Sources. 2021;509: 230340.

    Article  CAS  Google Scholar 

  26. García A, Monsalve-Serrano J, Sari RL, Martinez-Boggio S. Influence of environmental conditions in the battery thermal runaway process of different chemistries: thermodynamic and optical assessment. Int J Heat Mass Trans. 2022;184: 122381.

    Article  Google Scholar 

  27. Said AO, Lee C, Stoliarov SI, Marshall AW. Comprehensive analysis of dynamics and hazards associated with cascading failure in 18650 lithium-ion cell arrays. Appl Energ. 2019;248:415–28.

    Article  CAS  Google Scholar 

  28. Said AO, Lee C, Stoliarov SI. Experimental investigation of cascading failure in 18650 lithium-ion cell arrays: impact of cathode chemistry. J Power Sources. 2020;446: 227347.

    Article  CAS  Google Scholar 

  29. Liu X, Stoliarov SI, Denlinger M, Masias A, Snyder K. Comprehensive calorimetry of the thermally-induced failure of a lithium-ion battery. J Power Sources. 2015;280:516–25.

    Article  CAS  Google Scholar 

  30. Liu X, Wu ZB, Stoliarov SI, Denlinger M, Masias A, Snyder K. Heat release during thermally-induced failure of a lithium-ion battery: Impact of cathode composition. Fire Saf J. 2016;85:10–22.

    Article  CAS  Google Scholar 

  31. Prathap C, Ray A, Ravi MR. Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition. Combust Flame. 2008;155:145–60.

    Article  CAS  Google Scholar 

  32. Tao CF, Chen ZY, Ye QP, ·Li GY, Zhang·Y, Liu YQ. The study of thermal runaway characteristics of multiple lithium batteries under different immersion times. J Therm Anal Calorim. 2022; 147:11457–11466.

  33. Huggett C. Estimation of rate of heat release by means of oxygen consumption measurements. Fire Mater. 1980;4:61–5.

    Article  CAS  Google Scholar 

  34. Jia ZZ, Huang ZH, Zhai HZ, Qin P, Zhang Y, Li YW, Wang QS. Experimental investigation on thermal runaway propagation of 18,650 lithium-ion battery modules with two cathode materials at low pressure. Energy. 2022;251: 123925.

    Article  CAS  Google Scholar 

  35. Jiang J, Dahn JR. ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. Electrochem Commun. 2004;6:39–43.

  36. Tao CF, Li GY, Zhao JB, Chen G, Wang ZG, Qian YJ, Cheng XZ, Liu XP. The investigation of thermal runaway propagation of lithium-ion batteries under different vertical distances. J Therm Anal Calorim. 2020;142:1523–32.

    Article  CAS  Google Scholar 

  37. Yang H, Bang H, Amine K, Prakash J. Investigations of the exothermic reactions of natural graphite anode for Li-Ion batteries during thermal runaway. J Electrochem Soc. 2005;152:A73–9.

    Article  CAS  Google Scholar 

  38. Ma XY, Li J, Zhou HJ, Sun H. Continuous ammonia synthesis using Ru nanoparticles based on Li–N2 battery. Mater Today Energy. 2022;29: 101113.

    Article  CAS  Google Scholar 

  39. Chen MY, Zhou DC, Chen X, Zhang WX, Liu JH, Yuen R, Wang J. Investigation on the thermal hazards of 18650 lithium-ion batteries by fire calorimeter. J Therm Anal Calorim. 2015;122:755–63.

    Article  CAS  Google Scholar 

  40. Tao CF, Ye QP, Wang CM, Qian YJ, Wang CF, Zhou TT, Tang ZG. An experimental investigation on the burning behaviors of lithium ion batteries after different immersion times. J Clean Prod. 2020;242: 118539.

    Article  CAS  Google Scholar 

  41. Chen MY, He YP, Chuang DZ, Richard Y, Wang J. Experimental study on the combustion characteristics of primary lithium batteries fire. Fire Technol. 2014;52:365–85.

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Nos. 52274184 and 52074253), Natural Science Foundation of Anhui Province (No.1908085ME126), Fundamental Research Funds for the Central Universities (No. WK2320000053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lunlun Gong or Jiahao Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, C., Zhu, Y., Liu, Z. et al. The experimental investigation of thermal runaway characteristics of lithium battery under different nitrogen concentrations. J Therm Anal Calorim 148, 12097–12107 (2023). https://doi.org/10.1007/s10973-023-12534-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12534-1

Keywords

Navigation