Skip to main content
Log in

Increasing Adhesion of Carbon Fiber Filler to Polymer by Sizing – a Review

  • Published:
Fibre Chemistry Aims and scope

The problem of increasing adhesive interaction at the interface between a carbon-fiber-reinforcing filler and a polymer matrix and the dependencies of mechanical properties of carbon-fiber-reinforced plastics on the strength of fiber-matrix bonding is studied. The mechanisms determining occurrence of adhesive interaction between the components in the caron-fiber-reinforced plastic and the factors affecting the adhesion strength at the interface are explained. It is shown that adhesive interaction can be increased by modifying the surface of the carbon-fiber-reinforcing filler using the sizing method. The results of the studies in this direction are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. S.-J. Park, Carbon Fibers, Springer Verlag, Singapore (2019), 358 p.

    Google Scholar 

  2. E. Fitzer (editor), Carbon Fibers and Their Composites [Russian translation from English, Mir, Moscow (1988), 338 p.].

  3. A.I. Sidorina and A.G. Gunyaeva, Fibre Chemistry, 48, No. 4, 306-310 (2016).

    Article  CAS  Google Scholar 

  4. A.I. Sidorina, Fibre Chemistry, 50, No. 2, 85-88 (2018).

    Article  CAS  Google Scholar 

  5. E.N. Kablov and V.O. Startsev, Aviats. Mater. Tekhnol., No. 2, 47-58 (2018), DOI: https://doi.org/10.18577/2071-9140-2018-0-2-47-58.

  6. E.S. Zelensky, A.N. Kuperman, et al., Ros. Khim. Zhurn., XLV, No. 2, 56-74 (2001).

  7. D.V. Grinevich, N.O. Yakoblev, and A.V. Slavin, Tr. VIAM: Elektron. Nauch.-Tekhn. Zhurn., No. 7, p. 11 (2019), URL: http://www.viam-works.ru (circulation date16.07.2021), DOI: https://doi.org/10.18577/2307-6046-2019-0-7-92-111.

  8. E.N. Kablov, V.T. Erofeev, et al., J. Physics: Conference Series. “International Conference on Engineering Systems 2020”, 012029 (2020).

  9. J. Zhang, “Different surface treatments of carbon fibers and their influence on the interfacial properties of carbon fiber/epoxy composites.” Materials, Ecole Centrale Paris, 2012. URL: https://tel.archives-ouvertes.fr/tel-01146459 (circulation date 15.06.2021).

  10. D.B. Miracle and S.L. Donaldson (editors), ASM Handbook of Composites V. 21, Materials Park: ASM International (2001), 1100 p.

  11. P.J. Herrera-Franco and L.T. Drzal, Material Sci. Composites, 23, No. 1. 2-27 (1992).

    Article  CAS  Google Scholar 

  12. V.Ya. Varshavsky, Carbon Fibers [in Russian]. Varshavsky, Moscow (2007), 500 p.

    Google Scholar 

  13. L.T. Drzal and M. Madhukar, J. Materials Sci., 28, No. 3, 569-610 (1993).

    Article  CAS  Google Scholar 

  14. Yu. A. Mikhailin, Structural Polymer Composites [in Russian], Nauchnye Osnovy i Tekhnologii, Moscow (2008), 822 p.

    Google Scholar 

  15. E.S. Ananieva and S.V. Ananiev, Vestn. Tomsk. Gos. Univ., 15, No. 3, 1007-1009 (2010).

    Google Scholar 

  16. A.R. Garifullin and I.Sh. Abdullin, Vestn. Kazan. Tekhnol. Univ., No. 7 (2014), URL: https://cyberleninka.ru/ article/sovremennoe-sostoyanie-problemy-poverhnostnoy-obrabotki-uglerodnyh-volokna-dlya-posleduyushego- ih-primeneiya-v-polimernyh (circulation date 08.06.2021).

  17. A.I. Meleshko and S.P. Polovnikov, Carbon, Carbon Fibers, Carbon Composites [in Russian], Science Press, Moscow (2007), 192 p.

    Google Scholar 

  18. Yu.G. Bogdanova, Adhesion and Its Role in Strengthening Polymer Composites [in Russian], M.V. Lomonosov Moscow State University, Moscow (2010), 68 p.

    Google Scholar 

  19. J. Karger-Kocsis, H. Mahmood, and A. Pegoretti, Progress in Materials Sci., 73, 1-43 (2015).

    Article  CAS  Google Scholar 

  20. A.I. Sidorina and A.G. Gunyaeva, Fibre Chemistry, 49, No. 1, 24-27 (2017).

    Article  CAS  Google Scholar 

  21. S. Tiwari and J. Bijwe, Procedia Technol., 14, 505-512 (2014).

    Article  Google Scholar 

  22. Q. Wu, R. Zhaoa, Q. Ma, and J. Zhu, Composites Sci. a. Technol., 163, 34-40 (2018).

    Article  CAS  Google Scholar 

  23. A.A. Gubanov, Ph.D. Dissertation [in Russian], AO NII Grafit, Moscow (2015), URL: https://diss.muctr.ru/author/ 82/ (circulation date 08.06.2021).

  24. K.M. Beggs, L. Servinis, et al., Composite Sci. a. Technol., 118, 31-38 (2015).

    Article  CAS  Google Scholar 

  25. D.J. Eyckens, C.L. Arnold, et al., Composites: Part A, 140, 106147 (2020).

  26. S. Wang, Y. Yang, et al., Composites Sci. a. Technol., 203, 108562 (2021).

    Article  CAS  Google Scholar 

  27. A.I. Sidorina and E.Sh. Imametdinov, Fibre Chemistry, 52, No. 2, 96-99 (2020).

    Article  CAS  Google Scholar 

  28. X. Yuan, B. Zhu, et a., Appl. Surface Sci., 458, 996-1005 (2018).

  29. B. Zhang, Z. Dai, et al., J. Appl. Polymer Sci., 124, 2127-2132 (2012).

    Article  Google Scholar 

  30. A. McWilliams, Advanced Structural Carbon Products: Fibers, Foams & Composites, BBC Research, Wellesley (2013), 202 p.

  31. L.I. Bondaletova and V.G. Bondaletov, Polymer Composites, Part I: A Textbook [in Russian], Izd. Tomsk. Politekhn. Univ., Tomsk (2013), 118 p.

    Google Scholar 

  32. A.R. Bunsell (editor), Handbook of Tensile Properties of Textile and Technical Fibres, Woodhead Publishing, Cambridge (2009), 666 p.

  33. Q. Wu, R. Zhao, et al., Appl. Surface Sci., 504, 144384 (2020).

    Article  CAS  Google Scholar 

  34. A.I. Gulyaev, P.N. Medvedev, et al., Aviats. Mater. Tekhnol., No. 4, 80-86 (2019), DOI: https://doi.org/10.18577/2071-9140- 2019-0-4-80-86.

  35. C. Marston, B. Gabbitas, and J. Adams, J. Materials Sci., 32, No. 6, 1415-1423 (1997).

    Article  CAS  Google Scholar 

  36. S. Bowman, Q. Jiang, et al., Molecules, 23, 547 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Y. Liu, X. Zhang, et al., Materials a. Design, 88, 810-819 (2015).

    Article  CAS  Google Scholar 

  38. H. Yuan, S. Zhang, and C. Lu, Appl. Surface Sci., 317, 737-744 (2014).

    Article  CAS  Google Scholar 

  39. L. Mao, H. Shen, et al., Composites: Part A, 118, 49-56 (2019).

  40. F. Liu, Z. Shi, and Y. Dong, Composites: Part A, 112, 337-345 (2018).

  41. R.L. Zhang, Y.D. Huang, et al., Appl. Surface Sci., 257, 3519-3523 (2011).

    Article  CAS  Google Scholar 

  42. R.L. Zhang, Y.D. Huang, et al., Materials & Design, 33, 367-371 (2012).

    Article  Google Scholar 

  43. A.V. Nacharkina, I.V. Zelenina, et al., Tr. VIAM: Elektron. Nauch.-Tekhn. Zhurn., No. 1, 06 (2021), URL: http://www.viam-works.ru (circulation date16-07-2021), DOI: https://doi.org/10.18577/2307-6046-2021-0-1-54-65.

  44. Z. Dai, F. Shi, et al., Appl. Surface Sci., 257, 6980-6985 (2011).

    Article  CAS  Google Scholar 

  45. C. Unterweger, J. Duchoslav, et al., Composite Sci. a. Technol., 118, 41-47 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Sidorina.

Additional information

Translated from Khimicheskie Volokna, No. 5, pp. 3-10, September-October 2022

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorina, A.I. Increasing Adhesion of Carbon Fiber Filler to Polymer by Sizing – a Review. Fibre Chem 54, 281–287 (2023). https://doi.org/10.1007/s10692-023-10393-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-023-10393-y

Navigation