Skip to main content
Log in

Criteria for Confidence Prediction of Relaxation Processes of Polymer Textile Materials

  • Published:
Fibre Chemistry Aims and scope

The article considers the questions of adequacy of mathematical modelling of relaxation processes of polymer textile materials. The developed integral criteria for confidence prediction of relaxation processes of polymer textile materials are based on minimizing the integral functional-convolution corresponding to the defining equation of state. The implementation of the developed criteria for confidence prediction of relaxation processes of polymer textile materials is possible due to their computerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. A. G. Makarov, G. Y. Slutsker, et al., “Initial stage of stress relaxation in oriented polymers,” Phys. Solid State, 58, No. 4, 840-846 (2016).

    Article  CAS  Google Scholar 

  2. A. G. Makarov, G. Y. Slutsker, and N. V. Drobotun, “Creep and fracture kinetics of polymers,” Techn. Phys., 60, No. 2, 240-245 (2015).

    Article  CAS  Google Scholar 

  3. N. V. Pereborova, A. G. Makarov, et al., “Mathematical modelling and computed prediction of viscoelastic creep in geotextile nonwoven fabrics,” Fibre Chem., 50, No. 6, 487-490 (2019).

    Article  CAS  Google Scholar 

  4. N. V. Pereborova, A. G. Makarov, et al., “Methods of simulation and comparative analysis of shadow and deformation-reducing properties of aramide textile materials,” Izv. VUZ, Tekhnol. Tekst. Promysh., 375, No. 3, 253-257 (2018).

    Google Scholar 

  5. A. S. Gorshkov, A. G. Makarov, et al., “Modelling of directed polymers deformation processes based on the description of the kinetics of supramolecular structures separated by energy barriers,” Mag. Civil Eng., 44, No. 9, 76-83 + 103-104 (2013).

  6. A. G. Makarov, N. V. Pereborova, et al., “Quality analysis of deformation-relaxation properties of aramid cords mountain rescue appointments,” Izv. VUZ, Tekhnol. Tekst. Promysh., 368, No. 2, 309-313 (2017).

    Google Scholar 

  7. N. V. Pereborova, A. G. Makarov, et al., “Mathematical modelling and comparative analysis of deformation/recovery properties and shrinkage of aramid textile materials,” Fibre Chem., 50, No. 5, 468-472 (2019).

    Article  CAS  Google Scholar 

  8. P. P. Rymkevich, A. A. Romanova, et al., “The energy barriers model for the physical description of the viscoelasticity of synthetic polymers: application to the uniaxial orientational drawing of polyamide films,” J. Macromol. Sci. B, 52, No. 12, 1829-1847 (2013).

    Article  CAS  Google Scholar 

  9. N. V. Pereborova, A. G. Makarov, et al., “Methods of increasing the competitiveness of domestic aramid textile materials based on complex analysis of their functional properties,” Izv. VUZ, Tekhnol. Tekst. Promysh., 378, No. 6, 267-272 (2018).

    Google Scholar 

  10. N. V. Pereborova, A. V. Demidov, et al., “Methods of mathematical modeling and qualitative analysis of relaxationdeformation processes of aramide textile materials,” Izv. VUZ, Tekhnol. Tekst. Promysh., 374, No. 2, 251-255 (2018).

    Google Scholar 

  11. A. V. Demidov, A. G. Makarov, et al., “Forecasting of deformation-relaxation properties of poly amide fabric used to make the canopy,” Izv. VUZ, Tekhnol. Tekst. Promysh., 367, No. 1, 250-258 (2017).

    Google Scholar 

  12. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, “System analysis of viscoelasticity of textile stuffs,” Izv. VUZ, Tekhnol. Tekst. Promysh., 298, No. 3, 11-14 (2007).

    Google Scholar 

  13. A. G. Makarov, N. V. Pereborova, et al., “Mathematical modelling of deformation-relaxation processes polymeric materials in conditions of variable temperatures,” Izv. VUZ, Tekhnol. Tekst. Promysh., 370, No. 4, 287-292 (2017).

    Google Scholar 

  14. A. G. Makarov, N. V. Pereborova, et al., “Modelling and forecasting viscoelastic properties of textile materials with a complex structure,” Izv. VUZ, Tekhnol. Tekst. Promysh., 354, No. 6, 120-124 (2014).

    Google Scholar 

  15. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, “The criteria of optimal selection of mathematical model of textile materials viscoelasticity,” Izv. VUZ, Tekhnol. Tekst. Promysh., 293, No. 5, 21-25 (2006).

    Google Scholar 

  16. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, “A version of modeling of nonlinear-hereditary viscoelasticity of polymer materials,” Mech. Sol., 44, No. 1, 122-130 (2009).

    Article  Google Scholar 

  17. A. G. Makarov, N. V. Pereborova, et al., “Ways of modelling deformation and relaxation properties of textile materials with a complex structure,” Izv. VUZ, Tekhnol. Tekst. Promysh., 351, No. 3, 110-115 (2014).

    Google Scholar 

  18. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, “Definition of the computer forecasting trends of deformation properties of textile stuffs,” Izv. VUZ, Tekhnol. Tekst. Promysh., 297, No. 2, 14-17 (2007).

    Google Scholar 

  19. A. G. Makarov, A. V. Demidov, et al., “Modelling and prediction of estimated relaxation and deformation properties of the polymer parachute line,” Izv. VUZ, Tekhnol. Tekst. Promysh., 360, No. 6, 194-205 (2015).

    Google Scholar 

  20. A. M. Stalevich and A. G. Makarov, “Determining the inherent viscoelastic relaxation spectrum for synthetic filaments,” Izv. VUZ, Tekhnol. Tekst. Promysh., 255, No. 3, 8-12 (2000).

    Google Scholar 

  21. A. V. Demidov, A. G. Makarov, et al., “Research of changes of deformation properties of polyester threads depending on twist amount,” Izv. VUZ, Tekhnol. Tekst. Promysh., 292, No. 4, 9-13 (2006).

    Google Scholar 

  22. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, “Definition of the mechanical characteristics of textile stuffs at variable temperature,” Izv. VUZ, Tekhnol. Tekst. Promysh., 291, No. 3, 13-17 (2006).

    Google Scholar 

  23. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, “Definition of the mechanical characteristics of textile stuffs at variable temperature,” Izv. VUZ, Tekhnol. Tekst. Promysh., 294, No. 6, 15-18 (2006).

    Google Scholar 

  24. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, “Predicting the nonlinear hereditary viscoelasticity of polymers,” J. Appl. Mech. Tech. Phy., 48, No. 6, 897-904 (2007).

    Article  Google Scholar 

  25. A. M. Stalevich, A. G. Makarov, and E. D. Saidov, “Relaxation spectrometry of synthetic yarns,” Izv. VUZ, Tekhnol. Tekst. Promysh., 270, No. 1, 16-22 (2003).

    Google Scholar 

  26. A. G. Makarov, “Determining the analytical correlation between the standardized nuclei of relax-ation and creep in textile materials,” Izv. VUZ, Tekhnol. Tekst. Promysh., 266, No. 2, 13-17 (2002).

    Google Scholar 

  27. A. M. Stalevich and A. G. Makarov, “Forecasting the deformation recovery process and the reverse relaxation in polymer materials,” Izv. VUZ, Tekhnol. Tekst. Promysh., 267, No. 3, 10-13 (2002).

    Google Scholar 

  28. A. M. Stalevich and A. G. Makarov, “Forecasting the deformation recovery process and the reverse relaxation in polymer materials,” Izv. VUZ, Tekhnol. Tekst. Promysh., 268, No. 4-5, 15-18 (2002).

    Google Scholar 

Download references

The research was financed within the framework of fulfilling the state assignment of the Ministry of Science and Higher Education of the Russian Federation. Project No. FSEZ-2020-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Pereborova.

Additional information

Translated from Khimicheskie Volokna, No. 2, pp. 79-83, March-April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarova, A.A., Klimova, N.S., Pereborova, N.V. et al. Criteria for Confidence Prediction of Relaxation Processes of Polymer Textile Materials. Fibre Chem 53, 137–142 (2021). https://doi.org/10.1007/s10692-021-10254-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-021-10254-6

Navigation