Skip to main content
Log in

Modification of Surface of Carbon Fiber Materials by Plasma Treatment (Review)

  • FIBROUS COMPOSITE MATERIALS
  • Published:
Fibre Chemistry Aims and scope

Modern processes for plasma modification of carbon fiber materials with the aim of improving the degree of adhesive interaction at the boundary between the polymeric matrix and the carbon reinforcing filler are reviewed. The strength of adhesion of carbon fibers to the polymeric matrix at the interface has a deciding effect on the strength of the carbon plastics in shear and compression and determines to a significant degree the crack resistance of the carbon plastic materials, the specific impact viscosity, and the dynamic fatigue resistance, thereby determining the durability of constructions made from them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. N. Kablov, Metally Evrazii, No. 3, 10-15 (2012).

    Google Scholar 

  2. E. N. Kablov, Aviatsionnye Materialy i Tekhnologii, No. S, 7-17 (2012).

  3. V. Ya. Varshavskii, Carbon Fibers [in Russian], Varshavskii, Moscow (2007), 500 pp.

  4. V. E. Basin, Adhesion Strength [in Russian], Khimiya, Moscow (1981), 208 pp.

    Google Scholar 

  5. N. I. Egorenkov, N. I. Tishkov, Mekhanika Polimerov, 5, 933-935 (1977).

    Google Scholar 

  6. A. E. Chalykh, L. P. Vishnevskaya, V. M. Rogov, Vysokomol. Soed., Ser. A, 9, No. 12, 2604-2608 (1967).

  7. A. B. Zarin, A. S. Andreev, et al., Interaction of Reinforcing Fibers With Binders in the Production of Composite Fiber Materials [in Russian], NIITEKhIM, Moscow (1978), 35 pp.

    Google Scholar 

  8. A. I. Sidorina, A. G. Gunyaeva, Fibre Chemistry, 49, No. 1, 24-27 (2016).

    Article  Google Scholar 

  9. J. Zhang, Different surface treatments of carbon fibers and their influence on the interfacial properties of carbon fiber/epoxy composites. Materials, Ecole Centrale Paris (2012), 153 pp.

    Google Scholar 

  10. C. S. Wong, R. Mongkolnavin, Elements of Plasma Technology, Springer Singapore (2016), 123 pp.

  11. P. W. R. Beaumont, C. H. Zweben, Elsevier (2018), Vol. 1, pp. 763-802.

    Google Scholar 

  12. F. Vautard, P. Fioux, et al., J. Adhesion, 89, No. 6, 460-485 (2013).

    Article  CAS  Google Scholar 

  13. J. Jang, H. Yang, J. Materials Sci., 35, No. 9, 2297-2303 (2000).

    Article  CAS  Google Scholar 

  14. M. Sun, B. Hu, et al., Composite Sci. and Technol., 34, No. 4, 353-364 (1989).

    Article  Google Scholar 

  15. F. Su, Z. Zhang, et al., Composites. Part A. Appl. Sci. and Manufacturing, 36, 1601-1720 (2005).

    Article  Google Scholar 

  16. S. Erden, K. C. H. Kingsley, Plasma Chemi. Plasma Proc., 30, 471-487 (2010).

    Article  CAS  Google Scholar 

  17. M. Giorcelli, S. Guastella, et al., Carbon Fibre Functionalization by Plasma Treatment for Adhesion Enhancementon Polymers, American Institute of Physics: AIP Conference Proceeding, 2018. https://aip.scitation.org/https://doi.org/10.1063/1.5046004 (Application date 7.12.2018).

  18. J. Moosburger, E. Lachner, et al., Adhesion of carbon fibers to amine hardened epoxy resin: Influence of ammonia plasma functionalization of carbon fibers, Appl. Surface Sci., 453, 141-152 (2018).

    Google Scholar 

  19. N. Dilsiz, G. Akovali, Compos. Interfaces, 3, No. 5/6, 401-410 (1995).

    Article  Google Scholar 

  20. L. B. Noharaa, G. P. Filhob, et al., Materials Res., 8, No. 3, 281-286 (2005).

    Article  Google Scholar 

  21. J. Donnet, M. Brendle, et al., Carbon, 24, No. 6, 757-770 (1986).

    Article  CAS  Google Scholar 

  22. D. Packham, Surface, Intern. J. Adhesion. Adhesives, 23, No. 6, 437-448 (2003).

    Article  CAS  Google Scholar 

  23. F. Vautard, S. Ozcan, H. Meyer, Composites, Part A, 43, 1120-1133 (2012).

  24. S. A. Muboyadzhyan, S. A. Budinovskii, Aviatsionnye Materialy i Tekhnologii, No. S, 39-54 (2017). DOI: https://doi.org/10.18577/2071-0-S-39-54.

  25. E. N. Kablov, All Materials. Encyclopedia [in Russian] (2008), No. 3, pp. 12-14.

  26. E. N. Kablov, L. V. Solov’yanchik, et al., Ros. Nanotekhnologii, 11, No. 11-12, 91-97 (2016).

    Google Scholar 

  27. V. D. Krylov, N. O. Yakovlev, et al., Aviatsionnye Materialy i Tekhnologii, No. 1, 79-85 (2016). DOI: https://doi.org/10.18577/2071-9140-2016-0-1-79-85.

    Article  Google Scholar 

  28. A. I. Gulyaev, S. V. Shurtakov, Trudy VIAM:Elektron. Nauch.-Tekhnich. Zhurn., No. 7, St. 08 (2016). URL: http://www.viam-works.ru (Application date 17.12.2018) DOI: https://doi.org/10.18577/2307-6046-2016-0-7-8-8.

  29. A. I. Gulyaev, I. V. Iskhodzhanova, P. L. Zhuravleva, No. 7, St. 07 (2014). URL: http://www.viam-works.ru(Application date 20.03.2019). DOI: https://doi.org/10.18577/2307*6046-2014-0-7-7-7.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Sidorina.

Additional information

Translated from Khimicheskie Volokna, No. 2, pp. 28-32, March-April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorina, A.I., Imametdinov, E.S. Modification of Surface of Carbon Fiber Materials by Plasma Treatment (Review). Fibre Chem 52, 96–99 (2020). https://doi.org/10.1007/s10692-020-10159-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-020-10159-w

Navigation