Skip to main content
Log in

The influence of plasma in various atmospheres on the adhesion properties of recycled carbon fiber

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We studied the effects of the plasma surface treatment of recycled carbon fiber (RCF) for adhesion of the fiber to polymers after various plasma conditions. RCF was treated in dry air and CO2 by the plasma surface treatment to compare its surface and adhesive properties depended on treatment conditions. The changes in surface morphology of RCF were examined using scanning electron microscopy (SEM). Surface functionalization was quantified by X-ray photoelectron spectroscopy (XPS). The efficiency of the modification for adhesion properties by the plasma surface treatment depends on the gas used as well as on the exposure time. The micro-droplet test for adhesion properties and the surface change after performing an interfacial shear stress (IFSS) of carbon fiber-reinforced plastics (CFRP) were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Paiva, C. A. Bernardo, and M. Nardin, Carbon, 38, 1323 (2000).

    Article  CAS  Google Scholar 

  2. P. Brondsted, H. Lilholt, and A. Lystrup, Ann. Rev. Mater. Res., 35, 505 (2005).

    Article  CAS  Google Scholar 

  3. A. Vicari, Stronger, Lighter, Faster…Cheaper? How Innovation Will Affect Carbon Fiber’s Penetration in Target Applications, Lux Research report (2013).

    Google Scholar 

  4. R. Kozarsky, Stronger, Lighter, Faster…Cheaper? How Innovation Will Affect Carbon Fiber’s Cost and Market Impact, Lux Research report (2012).

    Google Scholar 

  5. R. Fukui, T. Odai, H. Zushi, I. Ohsawa, K. Uzawa, and J. Takahashi, in Proceedings of 9th Japan International SAMPE Symposium, Tokyo, 2005, p 44.

    Google Scholar 

  6. T. Suzuki, M. Kan, and J. Takahashi, in Proceedings of the 29th Symposium of Japan Society of Composite Materials, Okinawa, 2004, p 195.

    Google Scholar 

  7. T. Suzuki and J. Takahashi, in Proceedings of 9th Japan International SAMPE Symposium, Tokyo, 2005, p 14.

    Google Scholar 

  8. A. Greco, A. Maffezzoli, G. Buccoliero, F. Caretto, and G. Cornacchia, J. Compos. Mater., 47, 369 (2013).

    Article  CAS  Google Scholar 

  9. J. Meredith, S. Cozien-Cazuc, E. Collings, S. Carter, S. Alsop, J. Lever, S. R. Coles, B. M. Wood, and K. Kirwan, Compos. Sci. Technol., 72, 688 (2012).

    Article  CAS  Google Scholar 

  10. S. Pimenta and S. T. Pinho, Compos. Struct., 94, 3669 (2012).

    Article  Google Scholar 

  11. S. D. Gardner, C. S. Singamsetty, Z. Wu, and C. U. Pittman, Surf. Interface Anal., 24, 311 (1996).

    Article  CAS  Google Scholar 

  12. C. U. Pittman, G. R. He, B. Wu, and S. D. Gardner, Carbon, 35, 317 (1997).

    Article  CAS  Google Scholar 

  13. G. Zhang, S. Sun, D. Yang, J. P. Dodelet, and E. Sacher, Carbon, 46, 196 (2008).

    Article  CAS  Google Scholar 

  14. A. Proctor and P. M. Sherwood, Carbon, 21, 53 (1983).

    Article  CAS  Google Scholar 

  15. Y. Q. Wang, F. Q. Zhang, and P. M. Sherwood, Chem. Mater., 11, 2573 (1999).

    Article  CAS  Google Scholar 

  16. Z. R. Yu, W. Jiang, L. Wang, S. D. Gardner, and C. U. Pittman, Carbon, 37, 1785 (1999).

    Article  Google Scholar 

  17. S. J. Park and M. H. Kim, J. Mater. Sci., 35, 1901 (2000).

    Article  CAS  Google Scholar 

  18. B. Lindsay, M. L. Abel, and J. F. Watts, Carbon, 45, 2433 (2007).

    Article  CAS  Google Scholar 

  19. U. Zielke, K. J. Hüttinger, and W. P. Hoffman, Carbon, 34, 983 (1996).

    Article  CAS  Google Scholar 

  20. X. Fu, W. Lu, and D. D. Chung, Carbon, 36, 1337 (1998).

    Article  CAS  Google Scholar 

  21. L. G. Tang, J. L. Kardos, and W. P. Hoffman, Polym. Compos., 18, 100 (2004).

    Article  Google Scholar 

  22. J. Chen, M. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, and R. C. Haddon, Science, 282, 95 (1998).

    Article  CAS  Google Scholar 

  23. S. Banerjee, T. Hemraj-Benny, and S. S. Wong, Adv. Mater., 17, 17 (2005).

    Article  CAS  Google Scholar 

  24. H. Liu, X. Wang, P. Fang, S. Wang, X. Qi, C. Pan, G. Xie, and K. M. Liew, Carbon, 48, 721 (2010).

    Article  CAS  Google Scholar 

  25. R. J. Smiley and W. N. Delgass, J. Mater. Sci., 28, 3601 (1993).

    Article  CAS  Google Scholar 

  26. C. U. Pittman, W. Jiang, G. R. He, and S. D. Gardner, Carbon, 36, 25 (1998).

    Article  CAS  Google Scholar 

  27. M. A. Montes-Morán, A. Martínez-Alonso, J. M. Tascón, and R. J. Young, Compos. Part A, 32, 361 (2001).

    Article  Google Scholar 

  28. M. A. Montes-Morán, A. Martínez-Alonso, J. M. Tascón, M. C. Paiva, and C. A. Bernardo, Carbon, 39, 1057 (2001).

    Article  Google Scholar 

  29. M. A. Montes-Morán and R. J. Young, Carbon, 40, 845 (2002).

    Article  Google Scholar 

  30. J. P. Boudou, J. I. Paredes, A. Cuesta, A. Martínez-Alonso, and J. M. Tascón, Carbon, 41, 41 (2003).

    Article  CAS  Google Scholar 

  31. K. C. Ho, A. F. Lee, S. Lamoriniere, and A. Bismarck, Compos. Part A, 39, 364 (2008).

    Article  Google Scholar 

  32. H. Lee, I. Ohsawa, and J. Takahashi, Appl. Surf. Sci., 328, 241 (2015).

    Article  CAS  Google Scholar 

  33. M. Nakagawa, H. Kuriya, and K. Shibata, in Proceedings of the 5th International Symposium on Feedstock Recycling of Plastics, Sichuan, 2009, p 241.

    Google Scholar 

  34. K. H. Wong, D. Syed Mohammed, S. J. Pickering, and R. Brooks, Compos. Sci. Technol., 72, 835 (2012).

    Article  CAS  Google Scholar 

  35. X. Jianfei, X. Danwei, C. Hongyan, W. Cuntao, Z. Yi, Y. Lan, J. Feng, and Q. Yiping, Surf. Coat. Technol., 206, 191 (2011).

    Article  Google Scholar 

  36. E. Pisanova, S. Zhandarov, E. Mader, I. Ahmad, and R. J. Young, Compos. Part A, 32, 435 (2001).

    Article  Google Scholar 

  37. Y. Hou and T. Sun, J. Mater. Sci., 47, 4775 (2012).

    Article  CAS  Google Scholar 

  38. B. de Darwent, National Standard Reference Data Series, No. 31, National Bureau of Standards, Washington, DC, 52 (1970).

    Google Scholar 

  39. J. Y. Jeong, J. Park, I. Henins, S. E. Babayan, V. J. Tu, G. S. Selwyn, and R. F. Hicks, J. Phys. Chem., 104, 8027 (2000).

    Article  CAS  Google Scholar 

  40. F. Poncin-Epillard, B. Chevet, and J. C. Brose, Eur. Polym. J., 26, 333 (1990).

    Article  Google Scholar 

  41. W. Kowbel and C. H. Shan, Carbon, 28, 287 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hooseok Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Wei, H. & Takahashi, J. The influence of plasma in various atmospheres on the adhesion properties of recycled carbon fiber. Macromol. Res. 23, 1026–1033 (2015). https://doi.org/10.1007/s13233-015-3141-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3141-y

Keywords

Navigation